Компактный солнечный генератор, который не оставит вас без электричества. Солнечная энергетика: надежда человечества

На большей части территории России единственными источниками энергии выступают дизельные или бензиновые электростанции. Для развития производства энергии на основе использования солнечной и ветровой энергетики, отвечающего современным подходам к экологии, государству необходимо заинтересовать инвесторов.

Чистый евроэксперимент

Страны Евросоюза стали внедрять использование солнечной энергии в рамках уменьшения зависимости от углеводородов и в целях снижения выбросов в атмосферу парниковых газов. Суммарная установленная мощность солнечных электростанций (СЭС) в мире к 2019 году может достичь 500 ГВт, следует из аналитического отчета международной консалтинговой компании IHS. По итогам 2014 года объем солнечной генерации составил 180 ГВт. На сегодня в солнечную энергетику во всем мире инвестировано уже более $150 млрд, ежегодно этот объем увеличивается на 15-20%.

Одним из мировых лидеров на рынке солнечной генерации является Германия, на долю которой приходится 31% совокупной мощности. Уникальная особенность производства солнечной энергии в этой стране состоит в том, что 90% всех панелей расположены на крышах домов. Причем половина солнечных электростанций принадлежит частным лицам, а не генерирующим компаниям.

Как следует из отчета международной Ассоциации производителей солнечной энергии (Solar Energy Industries Association, SEIA) и GTM Research, в Соединенных Штатах к концу этого года будет работать более миллиона солнечных установок — их количество увеличится на 36% по сравнению с 2014 годом. За последние два года в США было введено в действие больше солнечных станций, чем за предыдущие 38 лет.

Китай и Япония сейчас занимают в совокупности 50% мирового рынка солнечной энергетики. Индия в среднесрочной перспективе планирует увеличить мощность солнечных установок с 2 ГВт до 20 ГВт.

Российская альтернатива

В России доля солнечной генерации составляет лишь 0,5-0,8% от общего объема мощности электростанций. По данным заместителя министра энергетики Алексея Текслера, которые он привел в сентябре в интервью телеканалу «Россия 24», до 2024 года в России планируется ввести порядка 1,6 ГВт мощностей солнечной генерации. Первая солнечная электростанция запущена на Алтае, этой осенью ее мощность увеличена в два раза, до 10 МВт. В течение пяти ближайших лет в регионе планируется возвести еще четыре подобные электростанции. На данный момент массив солнечных батарей работает в Белгородской области. В Крыму до 20% энергии добывается за счет ВИЭ — в первую очередь солнечных батарей и ветряных электростанций.

Совокупная мощность проектов солнечных электростанций, ввод которых в эксплуатацию запланирован до конца 2015 года, составляет 175,2 МВт. В Астраханской области должны появиться солнечные электростанции совокупной установленной мощностью 90 МВт, в Оренбургской области — 30 МВт, в Белгородской области и Башкирии — по 15 МВт.

Возврат инвестиций в строительство солнечных электростанций осуществляется на основе договора о поставке мощности (ДПМ) по аналогии с традиционной генерацией. В соответствии с этим документом генерирующая компания получает плату за мощность, которую она поставляет на оптовый рынок. Параметры тарифа для каждого объекта рассчитываются отдельно.

При господдержке строятся заводы по производству компонентов для солнечных электростанций. Это позволяет выполнить требования законодательства, в соответствии с которыми до 70% оборудования для СЭС должно производиться в России. Строительство таких заводов планируется в Подмосковье и Татарстане. На данный момент уже построен завод «Хевел» по производству тонкопленочных солнечных модулей в Чувашии.

По мнению экспертов, такое оборудование слишком дорого для использования в частном секторе экономики, срок его окупаемости составляет четыре—семь лет. Поэтому киловатт электроэнергии, получаемой с применением солнечных батарей, по-прежнему значительно дороже, чем электричество по государственному тарифу.

В таких условиях рынок может эффективно развиваться только при поддержке государства. Например, Великобритания в 2013 году провела эксперимент — солнечные батареи были запущены в продажу в торговой сети. Стоимость 18 панелей составляла £5,7 тыс. ($9,2 тыс.), на их приобретение выдавались госсубсидии. В дальнейшем пользователи получали возможность продавать излишки электроэнергии государству.

Несмотря на экономический кризис, аналитики высоко оценивают потенциал отрасли. Как отмечает президент Ассоциации солнечной энергетики России Антон Усачев, в последние пять лет технологии и оборудование для производства солнечной энергетики заметно подешевели, одновременно выросла эффективность солнечных модулей. Благодаря этому уже сегодня можно говорить о возможности полноценной конкуренции солнечной энергетики с традиционной генерацией.

Инвесторам неинтересно

Применение энергии ветра в России развивается еще медленнее, чем солнечная энергетика. Единственная промышленная ветроэлектростанция находится в Калининградской области, есть электростанции на Чукотке, в Башкирии, Калмыкии и Коми. В прошлом году Россия получила от ветропарков всего 16,8 МВт мощности. Схему их строительства на территории России в 2013 году утвердил премьер-министр Дмитрий Медведев. Согласно этим планам за 15 лет в стране должно быть построено 16 ветряных электростанций.

Однако инвесторов не устраивают условия, которые сложились на этом рынке. Здесь действуют те же правила, что и для солнечной генерации, предполагающие высокую квоту для отечественного оборудования. Но у нас в стране нет производства компонентов для ветроэлектростанций, их приходится закупать за рубежом. Поэтому желающих строить «ветряки» пока не нашлось.

Российские власти давно пытались привлечь внимание инвесторов к созданию на севере Дальнего Востока крупного ветропарка суммарной мощностью 50-70 ГВт. О том, что этот вопрос прорабатывается с иностранными партнерами, говорил в феврале текущего года глава Минэнергетики Александр Новак. 10 сентября РАО «ЭС Востока» сообщило об открытии в поселке Усть-Камчатск самого крупного на Дальнем Востоке ветропарка. Комплекс возводится при участии японской правительственной организации по разработке новых энергетических и промышленных технологий NEDO, которая безвозмездно предоставила оборудование для парка. Японцы в этом проекте преследуют научную цель — испытывают работоспособность установок в условиях холодного климата.

Усть-камчатский комплекс состоит из трех ветроэнергетических установок суммарной мощностью 900 кВт. Прогнозируется, что он, частично заместив выработку энергии дизельной электростанцией поселка, позволит экономить более 550 т топлива в год. Его сдача в эксплуатацию планируется в конце 2015 года. Предусмотрена возможность строительства впоследствии еще семи ВЭУ, в результате чего мощность комплекса достигнет 3 МВт.

Кроме Дальнего Востока и Севера в густонаселенных районах европейской части России имеется довольно много мест, где использование ветростанций можно считать перспективным. Это северо-запад страны — Мурманская, Архангельская и Ленинградская области. А также южные регионы — Краснодарский край, Карачаево-Черкесия, Ростовская, Волгоградская, Астраханская области, Калмыкия, считает президент Российской ассоциации ветровой индустрии Игорь Брызгунов.

В конце июля текущего года глава правительства Дмитрий Медведев своим распоряжением продлил действие программы поддержки ветрогенерации на оптовом рынке электрической энергии и мощности. Поддержка продлена на четыре года — с 2020 по 2024 год. Всего до 2024 года планируется ввести объектов ветрогенерации на 3600 МВт мощности, в 2015-2016 годах — на 50 и 51 МВт соответственно. «Документ направлен на поддержание необходимого уровня конкуренции на рынке ветроэнергетики и инвестирование в развертывание нового производственного оборудования», — говорится в пояснительной записке.


Энтузиасты создали «волшебный» чемоданчик, который позволит заряжать свои мобильные устройства, ноутбуки и даже налаживать освещение там, где нет электричества. Все что нужно новинке – солнечный свет.

Ученые, размышляющие, о цивилизационном развитии разумных форм жизни считают, что характеризовать их нужно в первую очередь по принципу того, как данная форма получает для своих нужд энергию. Первый этап – получение энергии из ресурсов, человечество уже минуло, и сейчас находиться в начале второго, переходного этапа своего развития – использовании энергии самого космоса.


Хотя сегодня получение электроэнергии при помощи сжигания сырья остается одним из самых популярных способов, генераторы, основанные на получении солнечной энергии, стремительно набирают популярность. Вторгается солнечная энергия в нашу цивилизацию не только на уровне высокой науки и техники, но и на вполне бытовом уровне. Уже сегодня есть множество устройств, позволяющих получать солнечную энергию. Одним из таких является и недавно созданный Kalipak Portable Solar Generator.


Название данного девайса говорит все и сразу, что о нем вообще следует знать, во всяком случае, в общих чертах. В сложенном виде выглядит Kalipak Portable Solar Generator, как чемоданчик. Первое, что следует знать, что это электрический генератор, способный аккумулировать солнечную энергию. Получение энергии производится, как несложно догадаться, при помощи раскладных солнечных батарей. Мощность солнечных панелей 20 Ватт. Вторая важная деталь – это аккумуляторы. В Kalipak используются литий-ионные батареи. Заряжать их можно как от солнца, так и предварительно от электросети дома.

Передавать имеющийся заряд энергии Kalipak может почти любым устройствам. Для этого предусмотрены сразу 4 сверхмощных USB-разъёма. Помимо них есть еще 2 отдельных порта на 12 В, которые можно использовать, например, для налаживания освещения. Что касается емкости батарей, то полного заряда хватит, чтобы зарядить 32 iPhone или 10 ноутбуков.

Отдельно следует отметить, что в переносном генераторе имеется свой жесткий диск для хранения информации с мобильных устройств и компьютеров. Есть также возможность синхронизировать датчики чемоданчика с мобильными устройствами на базе операционных систем iOS и Android.

В продолжение темы , которым не страшна самая страшная стихия.

По мнению Международного энергетического агентства, б ыстро сокращающиеся затраты на производство делают солнечные панели самым дешевым способом генерации электричества. По итогам прошлого года рост солнечной генерации превысил по темпам развития другие сектора электроэнергетики. С 2010 г. стоимость нового солнечного модуля снизилась на 70%, тогда как на оборудование в ветроэнергетике на 25% и расходы на аккумуляторы для электрокаров на 40%.

Согласно прогнозам независимых экспертов Bernreuter Research, к концу 2017 г. прирост мощностей в солнечной энергетике в глобальном масштабе достигнет 100 ГВт. Совокупная мощность установленных в мире СЭС по итогам 2016 г. составляла 74 ГВт. Самый большой прирост в этом сегменте приходится на Китай. Суммарная мощность новых солнечных станций достигла в КНР – 52 ГВт, на втором и третьем местах расположились США (12,5 ГВт) и Индия (9 ГВт). За год прирост составил более 30%: сейчас общие мощности солнечной электроэнергетики, по данным экспертов, составляют 300 ГВт.

По оценкам МЭА, в перспективе развитие солнечной энергетики получит особенно широкое распространение в Китае и Индии. Так, в последней недавно запустили специальную программу по электрификации, которая охватит 40 млн домохозяйств только до конца 2018 г. Решать проблемы снабжения электричеством будут в основном за счет дешевой солнечной энергии.

Однако, в отличие от АТР, в европейских странах доминирует ветроэнергетика. Согласно прогнозу МЭА, после 2030 г. именно она станет главным источником для выработки электроэнергии в европейских странах. «Солнечная энергетика быстро завоевывает рынки, включая Китай и Индию, поскольку именно она становится самым дешевым источником производства электроэнергии. Элекротранспорт, благодаря государственной поддержке и снижению затрат на выпускаемые аккумуляторы, быстро развивается», - утверждает исполнительный директор МЭА Фатих Бироль.

В период после 2030 г. в Европейском союзе на ВИЭ придется порядка 80% вводимых новых мощностей, а энергия ветра станет ведущим источником производства электроэнергии. Быстрое развитие солнечной энергетики, в особенности в Китае и Индии, позволит ей стать крупнейшим источником генерации к 2040 г. К этому времени доля всех возобновляемых источников энергии в общем объеме производства электроэнергии достигнет 40%.

МЭА отмечает быстрое развертывание мощностей и снижение затрат на экологически чистые энергетические технологии. Эксперты особо подчеркивают высокие темпы электрификации. По итогам прошлого года, расходы потребителей на электричество в глобальном масштабе достигли паритета с их расходами на нефтепродукты.

Вплоть до 2040 г. развитие возобновляемой энергетики будет по-прежнему поддерживаться со стороны государства. Однако трансформация энергетического сектора будет происходить главным образом благодаря миллионам домашних хозяйств, поселений и предприятий, инвестирующих в создание собственных распределенных мощностей возобновляемой энергетики.

Без учета крымских СЭС сегодня в России действует 10 станций общей мощностью около 100 МВт. В Крыму есть пять солнечных электростанций общей мощностью 300 МВт. В ноябре в России введена в строй первая Бичурская солнечная электростанция в Бурятии. Пока стоимость сооружения одной такой СЭС в стране составляет порядка 1 млрд рублей, при 70% локализации использованного оборудования. В сентябре компания «Хевел» запустила Майминскую СЭС на Алтае, мощностью в 20 МВт, стоимостью в 2 млрд рублей с использованием новых гетероструктурных моделей с повышенной эффективностью. Это уже четвертая СЭС на Алтае у «Хевел». Всего российским компаниям предстоит построить к 2024 г. 57 СЭС общей мощностью в 1,5 ГВт.

Нина Маркова

Направления научных исследований [ | ]

Фундаментальные исследования [ | ]

Прикладные исследования [ | ]

  • Фотоэлектрические преобразователи работают днём и с меньшей эффективностью работают в утренних и вечерних сумерках. При этом пик электропотребления приходится именно на вечерние часы. Кроме того, производимая ими электроэнергия может резко и неожиданно колебаться из-за смены погоды. Для преодоления этих недостатков на солнечных электростанциях используются эффективные электрические аккумуляторы (на сегодняшний день это недостаточно решённая проблема), либо преобразуют в другие виды энергии, например, строят гидроаккумулирующие станции , которые занимают большую территорию, или концепцию водородной энергетики , которая недостаточно экономически эффективна. На сегодняшний день эта проблема просто решается созданием единых энергетических систем, которые перераспределяют вырабатываемую и потребляемую мощность. Проблема некоторой зависимости мощности солнечной электростанции от времени суток и погодных условий решается также с помощью солнечных аэростатных электростанций.
  • Сравнительно высокая цена солнечных фотоэлементов. С развитием технологии и ростом цен на ископаемые энергоносители этот недостаток преодолевается. В - гг. цены на фотоэлементы снижались в среднем на 4 % в год.
  • Поверхность фотопанелей и зеркал (для тепломашинных ЭС) нужно очищать от пыли и других загрязнений. В случае крупных фотоэлектрических станций, при их площади в несколько квадратных километров это может вызвать затруднения, но применение отполированного стекла на современных солнечных батареях решает эту проблему.
  • Использование одно- и двухосевых трекеров (следящих систем) и систем с изменяемым углом наклона фотоэлектрических модулей позволяет оптимизировать угол падения солнечных лучей на модули в зависимости от времени суток и времени года. Однако практика показала низкую эффективность этих систем ввиду их высокой стоимости (относительно стремительно дешевеющих фотомодулей), дополнительных затрат энергии (для трекеров) либо на работы по изменению угла наклона (для систем с изменяемым углом), невысокой надёжности, в частности - ввиду постоянных атмосферных воздействий, необходимости регулярного обслуживания и ремонтов, а также повреждений модулей и электрического оборудования, вызванных регулярными механическими операциями .
  • Эффективность фотоэлектрических элементов падает при их нагреве (в основном это касается систем с концентраторами), поэтому возникает необходимость в установке систем охлаждения, обычно водяных. Также в фотоэлектрических преобразователях третьего и четвёртого поколений используют для охлаждения преобразование теплового излучения в излучение наиболее согласованное с поглощающим материалом фотоэлектрического элемента (так называемое up-conversion), что одновременно повышает КПД .
  • Через 30 лет эксплуатации эффективность фотоэлектрических элементов начинает снижаться. Отработавшие своё фотоэлементы, хотя и незначительная их часть, в основном специального назначения, содержат компонент (кадмий), который недопустимо выбрасывать на свалку. Нужно дополнительное расширение индустрии по их утилизации .

Экологические проблемы [ | ]

При производстве фотоэлементов уровень загрязнений не превышает допустимого уровня для предприятий микроэлектронной промышленности. Современные фотоэлементы имеют срок службы 30-50 лет. Применение кадмия , связанного в соединениях, при производстве некоторых типов фотоэлементов с целью повышения эффективности преобразования, ставит сложный вопрос их утилизации , который тоже не имеет пока приемлемого с экологической точки зрения решения, хотя такие элементы имеют незначительное распространение, и соединениям кадмия при современном производстве уже найдена достойная замена.

В последнее время активно развивается производство тонкоплёночных фотоэлементов, в составе которых содержится всего около 1 % кремния , по отношению к массе подложки, на которую наносятся тонкие плёнки. Из-за малого расхода материалов на поглощающий слой, здесь кремния, тонкоплёночные кремниевые фотоэлементы дешевле в производстве, но пока имеют меньшую эффективность и неустранимую деградацию характеристик во времени. Кроме того, развивается производство тонкоплёночных фотоэлементов на других полупроводниковых материалах, в частности Смиг , достойный конкурент кремнию. Так, например, в 2005 году компания Shell приняла решение сконцентрироваться на производстве тонкоплёночных элементов, и продала свой бизнес по производству монокристаллических (нетонкоплёночных) кремниевых фотоэлектрических элементов.

Солнечные концентраторы вызывают большие по площади затенения земель, что приводит к сильным изменениям почвенных условий, растительности и т. д. Нежелательное экологическое действие в районе расположения станции вызывает нагрев воздуха при прохождении через него солнечного излучения, сконцентрированного зеркальными отражателями. Это приводит к изменению теплового баланса, влажности, направления ветров; в некоторых случаях возможны перегрев и возгорание систем, использующих концентраторы, со всеми вытекающими отсюда последствиями. Применение низкокипящих жидкостей и неизбежные их утечки в солнечных энергетических системах во время длительной эксплуатации могут привести к значительному загрязнению питьевой воды. Особую опасность представляют жидкости, содержащие хроматы и нитриты, являющиеся высокотоксичными веществами.

Способы [ | ]

Способы получения электричества из солнечного излучения:

Развитие [ | ]

Годовая выработка электроэнергии в мире на СЭС
Год Энергия ТВт·ч Годовой прирост Доля от всей
2004 2,6 0,01%
2005 3,7 42% 0,02%
2006 5,0 35% 0,03%
2007 6,8 36% 0,03%
2008 11,4 68% 0,06%
2009 19,3 69% 0,10%
2010 31,4 63% 0,15%
2011 60,6 93% 0,27%
2012 96,7 60% 0,43%
2013 134,5 39% 0,58%
2014 185,9 38% 0,79%
2015 253,0 36 % 1,05 %
2016 301,0 33 % 1,3 %
Источник - Statistical Review of World Energy, 2015 - 2017

В 1985 году все установленные мощности мира составляли 0,021 ГВт.

В 2005 году Производство фотоэлементов в мире составляло 1,656 ГВт.

На начало 2010 года общая мировая мощность фотоэлементной солнечной энергетики составляла лишь около 0,1 % общемировой генерации электроэнергии .

В 2012 году общая мощность мировых гелиоэнергетических установок выросла на 31 ГВт, превысив 100 ГВт.

Крупнейшие производители фотоэлементов в 2012 году :

В 2013 году глобально было установлено 39 ГВт фотоэлектрических мощностей. В результате общая мощность фотоэлектрических установок на начало 2014 года оценивалась в 139 ГВт .

Лидером по установленной мощности является Евросоюз , среди отдельных стран - Китай: с января по сентябрь 2017 года в стране ввели в эксплуатацию 42 ГВт новых объектов фотоэлектрической генерации. По совокупной мощности на душу населения лидер - Германия.

Распространение солнечной электроэнергетики [ | ]

В 2010 году 2,7 % электроэнергии Испании было получено из солнечной энергии .

В 2011 году около 3 % электроэнергии Италии было получено из фотоэлектрических установок .

В декабре 2011 года на Украине завершено строительство последней, пятой, 20-мегаваттной очереди солнечного парка в «Перово », в результате чего его суммарная установленная мощность возросла до 100 МВт . Солнечный парк «Перово» в составе пяти очередей стал крупнейшим парком в мире по показателям установленной мощности. За ним следуют канадская электростанция (97 МВт), итальянская Montalto di Castro (84,2 МВт) и немецкая (80,7 МВт). Замыкает мировую пятерку крупнейших фотоэлектрических парков - 80-мегаваттная электростанция «Охотниково » в Сакском районе Крыма .

В 2018 г. Саудовская Аравия заявила о намерении построить крупнейшую в мире солнечную электростанцию мощностью 200 ГВт .

Рабочие места [ | ]

Перспективы солнечной электроэнергетики [ | ]

В мире ежегодный прирост энергетики за последние пять лет составлял в среднем около 50 % . Полученная на основе солнечного излучения энергия гипотетически сможет к 2050 году обеспечить 20-25 % потребностей человечества в электричестве и сократит выбросы углекислоты. Как полагают эксперты Международного энергетического агентства (IEA), солнечная энергетика уже через 40 лет при соответствующем уровне распространения передовых технологий будет вырабатывать около 9 тысяч тераватт-часов - или 20-25 % всего необходимого электричества, и это обеспечит сокращение выбросов углекислого газа на 6 млрд тонн ежегодно .

Процент обеспечения потребностей человечества к 2050 году электроэнергией, полученной на СЭС - это вопрос стоимости 1 кВт·ч при установке солнечной электростанции «под ключ» и развитости мировой энергетической системы, а также сравнительной привлекательности других способов получения электроэнергии. Гипотетически это может быть от 1 % до 80 %. Одно из чисел в этом диапазоне точно будет соответствовать истине.

В 2005 году мир прошел пик добычи нефти и с тех пор углеводородное сырье постепенно и неуклонно иссякает с ускоряющимися темпами в 5-7% в год, поэтому через 15-25 лет нефть и газ уже не будут массово использовать как топливо, и мир вынужден будет переходить полностью на альтернативные источники энергии.

солнечной электростанции значительно меньше 30 лет. Для США, при средней мощности солнечного излучения в 1700 кВт·ч на м² в год, энергоокупаемость поликристаллического кремниевого модуля с КПД 12 % составляет менее 4 лет (данные на январь 2011) .

Перспективы использования солнца для получения электричества ухудшаются из-за высоких издержек. Так, СТЭС Айвонпа обходится вчетверо дороже, а генерирует гораздо меньше электроэнергии, по сравнению с газовыми электростанциями. По подсчётам экспертов, в будущем электроэнергия, вырабатываемая этой станцией, будет стоить вдвое дороже, чем получаемая от обычных источников энергии, а расходы, очевидно, будут переложены на потребителей .

В России перспективы развития солнечной энергетики остаются неопределёнными, страна многократно отстаёт от уровня генерации европейских стран. Доля солнечной генерации составляет менее 0,001 % в общем энергобалансе. К 2020 году запланирован ввод около 1,5-2 ГВт мощностей. Общая мощность солнечной генерации может увеличиться в тысячу раз, однако составит менее 1 % в энергобалансе. Директор Ассоциации солнечной энергетики России Антон Усачев выделяет Республику Алтай , Белгородскую область и Краснодарский край как наиболее развитые регионы с точки зрения солнечной энергетики. В перспективе планируется помещать установки в изолированных от энергосетей районах .

Типы фотоэлектрических элементов [ | ]

Твердотельные [ | ]

Солнечная электростанция установленной мощностью 200Вт на основе батарей поликристаллических элементов

В настоящее время принято различать три поколения ФЭП :

  • Кристаллические (первое поколение):
    • монокристаллические кремниевые;
    • поликристаллические (мультикристаллические) кремниевые;
    • технологии выращивания тонкостенных заготовок: EFG (Edge defined film-fed crystal growth technique), S-web (Siemens), тонкослойный поликремний (Apex).
  • Тонкоплёночные (второе поколение):
    • кремниевые: аморфные, микрокристаллические, нанокристаллические, CSG (crystalline silicon on glass);
    • на основе теллурида кадмия (CdTe);
    • на основе селенида меди-индия-(галлия) (CI(G)S);
  • ФЭП третьего поколения:
    • фотосенсибилизированные красителем (dye-sensitized solar cell, DSC);
    • органические (полимерные) ФЭП (OPV);
    • неорганические ФЭП (CTZSS);
  • ФЭП на основе каскадных структур.

Солнечный транспорт [ | ]

Фотоэлектрические элементы могут устанавливаться на различных транспортных средствах: лодках, электромобилях и гибридных автомобилях , самолётах, дирижаблях и т. д.

Фотоэлектрические элементы вырабатывают электроэнергию, которая используется для бортового питания транспортного средства, или для электродвигателя электрического транспорта.

В Италии и Японии фотоэлектрические элементы устанавливают на крыши ж/д поездов. Они производят электричество для кондиционеров, освещения и аварийных систем.

Компания Solatec LLC продаёт тонкоплёночные фотоэлектрические элементы для установки на крышу гибридного автомобиля Toyota Prius . Тонкоплёночные фотоэлементы имеют толщину 0,6 мм, что никак не влияет на аэродинамику автомобиля. Фотоэлементы предназначены для зарядки аккумуляторов, что позволяет увеличить пробег автомобиля на 10 %.

В 1981 году летчик Paul Beattie MacCready совершил полет на самолёте Solar Challenger , питающемся только солнечной энергией, преодолев расстояние в 258 километров со скоростью 48 км/час . В 2010 году солнечный пилотируемый самолет Solar Impulse продержался в воздухе 24 часа. Военные испытывают большой интерес к беспилотным летательным аппаратам (БПЛА) на солнечной энергии, способным держаться в воздухе чрезвычайно долго - месяцы и годы. Такие системы могли бы заменить или дополнить спутники.

См. также [ | ]

Примечания [ | ]

  1. (англ.) . Department of Energy . energy.gov. Проверено 2 апреля 2015.
  2. Фомичева, Анастасия. «Солнечная генерация будет расти», - Сари Балдауф, председатель совета директоров энергохолдинга Fortum (неопр.) . Ведомости (03.12.2013). Проверено 3 апреля 2015.
  3. Photovoltaic Geographical Information System (PVGIS)
  4. Philip Wolfe. Solar Photovoltaic Projects in the Mainstream Power Market. // Oxford: Routledge. - 2012. - С. 240 . - ISSN 978-0-415-52048-5 .
  5. BP Statistical Review of World Energy June 2015, Renewables section , (June 2015).
  6. Статистическое обозрение Всемирной энергетической организации 2017 года , (June 2017).
  7. BFM.RU Солнечные технологии обеспечат четверть электричества.
  8. Graph of the Day: World’s top ten solar PV suppliers. 15 April 2013 // RE neweconomy
  9. Геро Рютер, Андрей Гурков. Мировая солнечная энергетика: переломный год (неопр.) . Deutsche Welle (29 мая 2013). Проверено 15 июня 2013. Архивировано 19 июня 2013 года.
  10. Владимир Сидорович . В текущем году в Китае будет введено более 50 ГВт солнечных электростанций , RenEn (17.10.2017).
  11. Paul Gipe Spain Generated 3 % of its Electricity from Solar in 2010 28 Январь 2011 г
  12. Paul Gipe Italy Passes 7,000 MW of Total Installed Solar PV 22 Июль 2011 г.
  13. Activ Solar построила в Крыму крупнейшую солнечную электростанцию в мире

О солнечной энергетике и перспективах ее развития ведутся споры и дискуссии уже много лет. Большинство считают солнечную энергетику – энергетикой будущего, надеждой всего человечества. Серьезные инвестиции вкладывает в строительство солнечных электростанций большое количество компаний. Солнечную энергетику стремятся развивать во многих странах мирах, считая ее главной альтернативой традиционным энергоносителям. Германия, являясь далеко не солнечной страной, стала мировым лидеров в этой сфере. Совокупная мощность СЭС Германии растет год от года. Серьезно занимаются разработками в области энергии солнца и в Китае. Согласно оптимистичному прогнозу International Energy Agency, солнечные электростанции к 2050 году смогут производить до 20-25% мировой электроэнергии.
Альтернативный взгляд на перспективы солнечных электростанций базируется на том, что затраты, которые требуются для изготовления солнечных батарей и аккумуляторных систем, в разы превышают прибыль от производимой солнечными электростанциями электроэнергии. Противники этой позиции уверяют, что все как раз наоборот. Современные солнечные батареи способны работать без новых капиталовложений десятки и даже сотни лет, произведенная ими суммарная энергия равна бесконечности. Вот почему в долгосрочной перспективе электроэнергия, полученная с использованием энергии солнца, станет не просто рентабельной, а сверхприбыльной.
Где же истина? Попробуем разобраться в этом вместе с вами, уважаемые читатели. Мы рассмотрим современные подходы в сфере солнечной энергетики и некоторые гениальнейшие идеи, которые на сегодняшний день уже реализованы. Мы попробуем установить КПД солнечных батарей, функционирующих в настоящее время, понять, почему сегодня этот КПД является довольно низким.

Эффективность солнечных батарей в России
Согласно современным исследованиям, солнечная энергия составляет порядка 1367 Ватт на 1 кв.м (солнечная постоянная). На экваторе через атмосферу до земли доходит лишь 1020 Ватт. На территории России с помощью солнечных электростанций (при условии, что КПД солнечных элементов составляет сегодня 16%) в среднем можно получить 163,2 Ватта на квадратный метр.
В с учетом погодных условий, длительности дня и ночи, а также, типа установки солнечных батарей (КПД солнечной батареи не учитывается).
Если в Москве установить квадратный километр солнечных батарей под углом в 40 градусов (что для Москвы оптимально), то годовой объем выработанной электроэнергии составит 1173*0.16 = 187.6 ГВт*ч. При цене на электроэнергию в 3 рубля за кВт/ч, условная стоимость сгенерированной электроэнергии – 561 млн. рублей.

Наиболее распространенные способы генерации электроэнергии с помощью солнца:

Солнечные тепло-электространции
Громадные зеркала таких солнечных электростанций, поворачиваясь, ловят солнце и отражают его на коллектор. Принцип функционирования таких электрогенерирующих станций основан на преобразовании тепловой энергии солнца в механическую электроэнергию термодинамической машины либо с помощью газопоршневого двигателя Стирлинга, либо с помощью нагрева воды и т.п.

В качестве примера рассмотрим электростанцию Ivanpah (мощность 392 мегаватт), в которую вложил свои средства всемогущий Google. В строительство солнечной электростанции, расположенной в калифорнийской пустыне Мохаве, вложено более двух миллиардов долларов США. На 1 кВт установленной мощности СЭС затрачено 5612 долларов. Многие полагают, что эти затраты, хотя и превышают затраты на сооружение угольных электростанций, гораздо ниже, чем затраты на строительство АЭС. Но так ли это? Во первых, на атомной электростанции, на 1 кВт ее установленной мощности расходуется от 2000 до 4000 долларов, что дешевле, чем затраты, которые пошли на строительство Ivanpah. Во вторых, годовая выработка электроэнергии солнечной электростанции – 1079 ГВт*ч, следовательно, ее среднегодовая мощность 123.1МВт. К тому же, солнечная электростанция станция способна генерировать энергию солнца только в дневные часы. Таким образом, «усредненная» стоимость строительства СЭС доходит до 17870 долларов за 1 кВт, а это довольно значительная цена. Пожалуй, дороже обошлась бы разве что выработка электричества в открытом космосе. Затраты на строительство привычных электростанций, работающих, например, на газе, в 20-40 раз ниже. При этом, в отличие от солнечных электростанций, эти электростанции могут функционировать постоянно, производя электроэнергию тогда, когда в ней есть потребность, а не только в те часы, когда светит солнце.
Но мы знаем, что современные солнечные теплоэлектростанции способны генерировать электроэнергию круглосуточно, используя для этого большой объем нагреваемого в течение всего светового дня теплоносителя. Только стоимость строительства этих станций стараются не слишком афишировать, вероятно, потому, что она является значительной. А если в стоимость проектирования и строительства солнечных электростанций включить аккумуляторы, тем более, строительство гидроаккумулирующих электростанций, то сумма возрастет до фантастических размеров.

Кремниевые солнечные батареи
Сегодня для функционирования СЭС применяются полупроводниковые фотоэлементы, которые представляют собой полупроводниковые диоды большой площади. Влетающий в pn-переход световой квант, генерирует пару электрон-дырка, при этом, на выходах фотодиода создается перепад напряжения (порядка 0,5В).
КПД кремниевой солнечной батареи - порядка 16 %. Почему же КПД столь низок? Для того чтобы сформировать электронно-дырочную пару, требуется определенная энергия. Если прилетевший световой квант обладает малой энергией, то генерации пары не произойдет. В этом случае квант света просто пройдет сквозь кремний, как сквозь обыкновенное стекло. Вот почему кремний является прозрачным для инфракрасного света далее 1.2 мкм. Если же световой квант прилетит с большей энергией, чем требуется для генерации (зеленый свет), пара образуется, но избыток энергии просто уйдет в никуда. При синем и ультрафиолетовом свете (энергия которого является очень высокой), квант может не успеть долететь до самых глубин p-n перехода.


Для того чтобы солнечный свет не отражался от поверхности солнечной батареи, на нее наносится специальное противоотражающее покрытие (такое покрытие наносят и на линзы фотообъективов). Текстуру поверхности делают неровной (в виде гребенки). В этом случае световой поток, отразившись от поверхности один раз, возвращается вновь.
КПД фотоэлементов увеличивают, комбинируя между собой фотоэлементы, на основе различных полупроводников и с разной энергией, необходимой для генерации пары электрон-дырка. Для трехступенчатых кремниевых фотоэлементов достигается КПД в 44% и даже выше. Принцип работы трехступенчатого фотоэлемента основан на том, что сначала ставится фотоэлемент, который эффективно поглощает именно синий свет, а красный и зеленый, пропускает. Второй фотоэлемент поглощает зеленый, третий – ИК. Однако трехступенчатые фотоэлементы сегодня очень дороги, поэтому, повсеместно используются более дешевые одноступенчатые фотоэлементы, которые за счет цены опережают трехступенчатые по показателю Ватт/$.
Гигантскими темпами развивает производство кремниевых фотоэлементов Китай, за счет чего стоимость одного ватта снижается. В Китае она составляет примерно 0,5 долларов за Ватт.
Основными типами кремниевых фотоэлементов являются:
Монокристаллические
Поликристаллические
КПД монокристаллических фотоэлементов, которые являются более дорогими, несколько выше (всего лишь на 1 %), чем КПД поликристаллических. Поликристаллические кремниевые фотоэлементы сегодня обеспечивают наиболее дешевую стоимость 1 Ватта генерируемой электроэнергии.
Кремниевые солнечные батареи не могут служить вечно. За 20 лет эксплуатации в условиях агрессивной среды самые совершенные из них теряют до 15-ти процентов своей первоначальной мощности. Есть основания полагать, что в дальнейшем деградациях солнечных батарей замедляется.

Кремниевый фотоэлемент и параболическое зеркало
Изобретатели во всех странах мира предпринимают всевозможные попытки увеличить экономическую рентабельность солнечных электростанций. Если, например, взять маленький эффективный кремниевый фотоэлемент и параболическое зеркало (concentrated photovoltaics), можно достичь КПД в 40 % вместо 16, при этом, зеркало гораздо дешевле, чем солнечная батарея. Но для того чтобы следить за солнцем, требуется надежная механика. Громадная зеркальная поворотная тарелка должна быть надежно укреплена и защищена от мощных ветровых порывов и агрессивных факторов окружающей среды. Вторая проблема заключается в том, что параболические зеркала не могут фокусировать рассеянный свет. Если солнце зашло даже за не плотные тучи, выработка энергии с помощью параболической системы упадет до нуля. У привычных солнечных батарей в этих условиях выработка тепловой энергии тоже серьезно снижается, но не до нуля. Солнечные батареи с параболическими зеркалами слишком дороги по установочной стоимости и затратны в обслуживании.

Круглые солнечные элементы на крышах
Американской компанией Solyndra при поддержки правительства были сконструированы солнечные фотоэлементы круглой формы. Они монтировались на крышах, выкрашенных в белый цвет. Солнечные батареи круглой формы изготавливали путем напыления проводникового слоя (в случае с Solyndra использовался Copper indium gallium (di)selenide) на стеклянные трубы. Фактическая эффективность круглых батарей составляла порядка 8,5 %, что ниже более дешевых кремниевых. Solyndra, получившая государственные гарантии по громадному кредиту, обанкротилась. В технологии, экономическая эффективность от которых была весьма сомнительной с самого начала, американская экономика вложила немалые денежные средства. «Удачное» лоббирование неэффективных технологий – это не только российское ноу хау.

Большая проблема солнечной энергетики!
Известно, что солнечные электростанции генерируют электроэнергию днем, в то время, как огромная потребность в электричестве возникает как раз таки в вечерние часы. Это значит, что без аккумуляторов солнечные электростанции не будут эффективны. В вечерний пик потребления электричества придется задействовать альтернативные (классические) источники электроэнергии. В дневные часы часть традиционных электростанций придется отключить, а часть - держать в горячем резерве на случай плохой погоды. Если над солнечной электростанцией нависнут тучи, недостающую электроэнергию должна давать резервная. В итоге, классические генерирующие мощности стоят в резерве и теряют прибыль.


Есть еще один путь. Он отражен в проекте Desertec – передача электроэнергии из Африки в Европу. С помощью ЛЭП в вечерний пик потребления электричества можно передавать электроэнергию от СЭС, которые находятся в тех районах земного шара, где в это время в разгаре солнечный день. Но этот способ до перехода на сверхпроводники требует огромных финансовых затрат, а также, всевозможных согласований между разными государствами.

Использование аккумуляторов
Мы выяснили, что в среднем стоимость одного Ватта, произведенного солнечной батареей - 0,5 доллара. В течение дня (8 часов) батарея способна сгенерировать в пределах 8-ми Вт*ч. Эту энергию необходимо сохранить до вечернего пика потребления электричества.
Литиевые аккумуляторы, разработанные в Китае, стоят приблизительно 0,4 доллара за Вт*ч, следовательно, для солнечной батареи стоимостью 0,5 доллара, на 1 Вт будут необходимы аккумуляторы стоимостью 3,2 доллара, а это в шесть раз превышает стоимость самой батареи. Если учесть, что литиевый аккумулятор рассчитан максимум на 2000 циклов заряда-разряда, что составляет от трех до шести лет, то можно сделать вывод, - литиевый аккумулятор, это чрезвычайно дорогое решение.
Самыми дешевыми аккумуляторами являются свинцово-кислотные. Оптовая цена этих далеко не самых экологичных систем, порядка 0,08 доллара за Вт*ч. Свинцово-кислотные аккумуляторы также, как и литевые, рассчитаны на 3-6 лет работы. КПД свинцового аккумулятора составляет 75 %. Четвертую часть своей энергии этот аккумулятор теряет в цикле заряд-разряд. Чтобы сохранить дневную выработку солнечной энергии понадобится приобрести свинцово-кислотные аккумуляторы на 0.64 доллара. Мы видим, что это также больше, чем стоимость самих батарей.
Для современных СЭС разработаны гидроаккумулирующие электростанции. В течение светового дня в них закачивается вода, а ночью они функционируют как обычные гидроэлектростанции. Но строительство этих электростанций (КПД 90 %) не всегда возможно и чрезвычайно дорого.
Мы можем сделать неутешительный вывод. На сегодняшний день аккумуляторы обходятся дороже, чем сами СЭС. Для крупных солнечных электростанций они не предусмотрены. По мере генерации электроэнергии, крупные солнечные электростанции продают ее в распределительные сети. В вечернее и ночное время электроэнергию вырабатывают обычные электростанции.

Энергия солнца - какова сегодня ее цена?
Возьмем, к примеру, Германию – мирового лидера в использовании солнечной энергетики. Киловатт солнечной энергии, которая генерируется (даже в дневные часы, а ведь такая электроэнергия дешевле), выкупается в этой стране по цене от 12 до 17,45 евроцентов за кВт*ч. Поскольку газовые электростанции в Германии по прежнему строятся, функционируют или находятся в горячем резерве, солнечные электростанции в этой стране фактически просто помогают экономить российский газ.
Стоимость российского газа на сегодняшний день – 450 долларов за тысячу кубометров. Из этого объема газа (КПД генерации 40%) можно выработать приблизительно 4.32 ГВт электроэнергии. Следовательно, на 1 кВт*ч электричества выработанного от солнца, российского газа экономится на сумму в 0,104 доллара или 7,87 евроцента. Вот справедливая стоимость солнечной нерегулируемой генерации. Таким образом, в настоящее время в Германии солнечная энергетика на 50 % дотируется государством. Хотя, необходимо отметить, что Германия стремительно снижает стоимость генерации электроэнергии от солнца.

Делаем выводы
Самое экономичное солнечное электричество (0,5 долларов за 1 Ватт) получают сегодня с помощью солнечных поликристаллических батарей. Все остальные способы получения электричества с помощью энергии солнца, на порядок дороже.
Проблема, которая является ключевой для солнечной энергетики, это все же не КПД солнечных батарей, не цены, и не EROEI, который теоретически бесконечен. Главная проблема заключается в удешевлении способов генерации энергии солнца, полученной в дневные часы и сбережения этой энергии для вечернего пикового потребления. Ведь в настоящее время аккумуляторные системы, срок службы которых от трех до шести лет, в разы дороже самих солнечных батарей.
Солнечная генерация в значительных масштабах рассматривается сегодня только в виде способа экономии небольшой части традиционного ископаемого топлива в дневное время. Солнечная энергетика пока не в силах полностью взять на себя нагрузку в вечерние пиковые часы энергопотребления и уменьшить число АЭС, угольных, газовых и гидроэлектростанций, которые в дневные часы должны стоять в резерве, а в вечерние, брать на себя значительную энергетическую нагрузку.
Если в результате ужесточения тарифов (при которых, например, производителям водорода и алюминия будет выгодно запускать свое электролизное производство в дневные часы) пик потребления электроэнергии сместится на дневные часы, то у энергии солнца появятся более серьезные перспективы для развития.
Стоимость солнечной генерации, которая является «нерегулируемой», несопоставима со стоимостью генерации электроэнергии на привычных электростанциях, которые могут свободно генерировать ее в любое время, когда в этом есть необходимость.
Стоимость солнечной электроэнергии не должна превышать стоимости ископаемого топлива, сэкономленного с ее помощью. Если, например, газ в Германии стоит 450 долларов, то цена солнечной генерации в этой стране не должна превышать 0,1 доллара за киловатт час, в противном случае солнечная энергетика в этой стране является убыточной. До тех пор пока ископаемое топливо будет оставаться дешевым и легкодоступным, генерация солнечной энергии является невыгодной с экономической точки зрения.
В настоящее время использование энергии солнца и дорогостоящих солнечных аккумуляторных систем является экономически оправданным только для тех регионов и объектов, где нет других возможностей подключения к электросетям. Например, на одиноко стоящей, отдаленной станции сотовой связи.
Однако, не стоит забывать следующих важных факторов, которые вселяют оптимизм при рассмотрении солнечной энергетики:
1. Стоимость ископаемого топлива неуклонно растет по мере уменьшения его запасов.
2. Разумная государственная политика делает использование солнечных электростанций выгоднее.
3. Прогресс не стоит на месте! КПД солнечных электростанций повышается, разрабатываются новые технологии в генерировании и аккумулировании электроэнергии.

Поэтому, хочется верить, через 3-5 лет можно будет написать гораздо более позитивный обзор этой отрасли энергетики!



Просмотров