Включение генератора на параллельную работу с сетью. Параллельная работа синхронных генераторов

Обычно на электростанциях устанавливают несколько синхронных генераторов для параллельной работы на общую электросеть. Это обеспечивает увеличение общей мощности электростанции (при ограниченной мощности каждого генератора), повышает надежность энергоснабжения потребителей и позволяет лучше организовать обслуживание агрегатов.

Таким образом, для синхронной машины, установленной на электростанции или другом объекте, подключенном к энергосистеме, обычным является режим работы на сеть большей мощности, по сравнению с собственной мощностью. Поэтому принимают, что генератор работает параллельно с сетью бесконечно большой мощности, т.е. и ее частотаявляется неизменными, не зависящими от нагрузки данного генератора.

Включение генератора на параллельную работу с сетью

В рассматриваемом режиме необходимо обеспечить меньший бросок тока в момент присоединения генератора к сети (иначе может сработать защита, произойти поломка генератора или первичного двигателя).

Ток в момент подключения генератора к сети равен нулю, если будут равны мгновенные значения напряжений сети и генератора

На практике выполнение этого условия решается выполнением трех равенств:

Для 3-фазных генераторов нужно согласовать порядок чередования фаз.

Совокупность операций при подключении генератора к сети называют синхронизацией . Для этого сначала устанавливают
(номинальная частота вращения ротора), что приводит к равенству частот
, а затем регулируяуравниваюти. Совпадение по фазе векторов напряжений сети и генератора (
) контролируется специальными приборами – синхроноскопами (ламповыми или стрелочными) (ламповые - в лабораторной практике для генератора малой мощности).

Три лампы включают между фазами генератора и сети. На каждую лампу действует
, которое при частоте
изменяется с частотой
, называемоечастотой биений . При
разность
изменяется медленно, поэтому лампы постепенно загораются и погасают. Генератор подключают, когда
стремиться к нулю, т.е. в середине между погасанием ламп. В этом случае выполняется условие совпадения по фазе векторов напряжений сети и генератораи. Для более точного определения этого момента часто применяют нулевой вольтметр, имеющий растянутую шкалу в области нуля. После включения генератора в сеть дальнейшая синхронизация частоты его вращения происходит автоматически.

Генераторы большой мощности синхронизируют с помощью стрелочных синхроноскопов, работающих по принципу вращающегося магнитного поля. В этих приборах при
стрелка вращается с частотой
в одну или другую сторону. При равенстве частот стрелка устанавливается на нуль, в этот момент и подключают генератор к сети.

На электростанции приборы синхронизации автоматические.

Часто используют метод самосинхронизации , при котором генератор подключают к сети при отсутствии возбуждения (обмотку возбуждения замыкают на активное сопротивление). При этом ротор разгоняют до частоты вращения, близкой к синхронной (2% скольжения допускается). Затем в обмотку возбуждения подают постоянный ток, что приводит к втягиванию ротора в синхронизм. Но при этом методе в момент включения генератора возникает большой бросок тока, он не должен превышать 3,5
.

Регулирование активной мощности.

После включения генератора в сеть его напряжение становится равным напряжению сети U C . Относительно внешней нагрузки напряжения U и U C совпадают по фазе, а по контуру «генератор-сеть» находятся в противофазе, т.е.
.

При выполнении трех условий необходимых для синхронизации генератора, его ток после подключения машины к сети равен нулю.

Рассмотрим, как можно регулировать при работе генератора параллельно с сетью на примере неявнополюсного генератора.

Ток, проходящий по обмотке якоря неявнополюсного генератора можно определить из уравнения.

- из темы векторная диаграмма неявнополюсной машины

т.к.
, то силу токаможно изменить двумя способами –изменяя ЭДС по величине или по фазе .

Если к валу генератора приложить внешний момент, больший момента, необходимого для компенсации магнитных потерь мощности в стали и механических потерь, то ротор приобретает ускорение. Вследствие чего, вектор смещается относительно вектораU на некоторый угол θ в направлении вращения векторов. При этом возникает некоторая небалансная ЭДС
, приводящая к появлению тока.

Возникающую небалансную ЭДС покажем по векторной диаграмме.

Вектор тока отстает от вектора
на 90 0 , т.к. его величина и направление определяются индуктивным сопротивлением
.

При работе в рассмотренном режиме генератор отдает в сеть активную мощность
и на вал его действует электромагнитный тормозной момент, который уравновешивает вращающий момент первичного двигателя, поэтому частота вращения остается неизменной. Чем больше внешний момент, приложенный к валу генератора, тем больше угол θ нагрузки, а следовательно, ток и мощность, отдаваемые генератором в сеть.

Если к валу ротора генератора приложить внешний тормозной момент, то вектор будет отставать от вектораU на угол θ.

При этом возникает небалансная ЭДС
и ток, вектор которого отстает от вектора ∆ E на 90 0 . Т.к. угол φ>90 0 , активная составляющая тока находится в противофазе с
. Следовательно, в рассмотренном режиме активная мощность
забирается из сети, и машина работаетдвигателем , создавая электромагнитный вращающийся момент, частота вращения ротора при этом снова остается неизменной.

Таким образом, для увеличения нагрузки генератора необходимо увеличить приложенный к его валу внешний момент (т.е. вращающийся момент первичного двигателя), а для уменьшения нагрузки – уменьшить этот момент . При изменении направления внешнего момента (если вал ротора не вращать, а тормозить) машина автоматически переходит в двигательный режим.

Особенности работы генератора на сеть большой мощности. Обычно на электростанциях устанавливают несколько синхрон­ных генераторов для параллельной работы на общую электрическую сеть. Это обеспечивает увеличение общей мощности электростанции (при ограниченной мощности каждого из установленных на ней генераторов), повышает надежность энергоснабжения потребителей и позволяет лучше организовать обслуживание агрегатов. Электрические станции, в свою очередь, объединяют для параллельной работы в мощные энергосистемы, позволяющие наилучшим образом решать задачу производства и распределения электрической энергии. Таким образом, для синхронной машины, установленной на электрической станции или на каком-либо объекте, подключенном к энергосистеме, типичным является режим работы на сеть большой мощности, по сравнению с которой собственная мощность генератора является очень малой. В этом случае с большой степенью точности можно принять, что генератор работает параллельно с сетью бесконечно большой мощности т. е. чтонапряжение сети U c и ее частота f c являются постоянными, не зависящими от нагрузки данного генератора.

Включение генератора на параллельную работу с сетью. В рассматриваемом режиме необходимо обеспечить возможно меньший бросок тока в момент присоединения генератора к сети. В противном случае возможны срабатывание защиты поломка генератора или первичного двигателя.

Ток в момент подключения генератора к сети будет равен нулю, если удастся обеспечить равенство мгновенных значений напряжений сети u с и генератора и г:

U cm sin (ω c t - α с) = U гm sin (ω г - α г ).

На практике выполнение условия (6.27) сводится к выполнению трех равенств: значений напряжений сети и генератора U cm = U гm или U c = U г; частот ω c = ω г или f с = f г; их начальных фазα с = α г (совпадение по фазе векторов Ú c и Ú г). Кроме того, для трехфазных генераторов нужно согласовать порядок чередования фаз.

Совокупность операций, проводимых при подключении генератора к сети, называют синхронизацией. Практически при синхронизации генератора сначала устанавливают номинальную частоту вращения ротора, что обеспечивает приближенное равенство частот f с ≈ f г а затем, регулируя ток возбуждения, добиваются равенства напряжения U c = U г. Совпадение по фазе векторов напряжений сети и генератора (α с = α г) контролируется специальными приборами - ламповым и стрелочными синхроноскопами .

Ламповые синхроноскопы применяют для синхронизации генераторов малой мощности, поэтому обычно их используют в лабораторной практике. Этот прибор представляет собой три лампы, включенные между фазами генератора и сети (рис. 6.32, а). На каждую лампу действует напряжение Δu = u с - u г, которое при f с ≠ f г изменяется с частотой Δf = f c - f г, называемойчастотой биений (рис. 6.32,б). В этом случае лампы мигают. При f с ≈ f г разность Δи изменяется медленно, вследствие чего лампы постепенно загораются и погасают.

Лабораторная работа №3

ИССЛЕДОВАНИЕ ПАРАЛЛЕЛЬНОЙ РАБОТЫ СИНХРОННОГО ГEHEPATОPA С СЕТЬЮ

Цель работы – изучение методов включения синхронного генератора в сеть, нагружение его активной и реактивной мощностью, снятие U-образной характеристики.

Оборудование и приборы:

Трехфазный синхронный генератор СГР-4,5 , трехфазный асинхронный двигатель ВАО-52-4, комплект измерительных приборов К-50 , индукционный регулятор с выпрямителем, амперметр магнитоэлектрической системы на 10, ламповый синхроскоп ЛС, нулевой вольтметр электромагнитной системы с пределом измерения 250 В.

1. Включить синхронную машину на параллельную работу с сетью:

а) методом точной синхронизации (за помощью синхроноскопа);

б) методом грубой синхронизации.

2. Снять и построить U -образную характеристику генератора при Р 1 = 0.

3. По данным опыта рассчитать и построить зависимость cosj = f(і в) . Перевести синхронную машину в режим двигателя и осуществить регулирование активной и реактивной мощности при постоянном токе статора І 1 = const .

4. Снять характеристики І 1р = f(P 1), і в = f(P 1), cosj = f(P 1) .

Порядок выполнения работы

Условия включения синхронного генератора на параллельную работу.

При включении синхронного генератора на параллельную работу с сетью необходимо соблюдать следующие условия:

1) напряжение (ЭДС ) генератора должно быть равно по величине и быть противоположным по фазе напряжению сети U г = -U c ;

2) частота напряжения генератора должна равняться частоте напряжения сети f г = f с ;

3) порядок следования фаз у генератора и сети должен быть одинаковым.

Совокупность операций по выполнению этих условий, сделанных в режиме холостого хода синхронного генератора, называется синхронизацией.

Включение генератора на параллельную работу с сетью

2.1 По методу точной синхронизации. Точная синхронизация генератора с сетью наступает, когда при одинаковом порядке следования фаз частота и напряжение генератора равны частоте и напряжению сети, а векторы U г и U с встречны один другому, т.е. составляют между собой 180 электрических градусов.

Довговременно поддерживать такой режим в автономно работающем генераторе невозможно. Поэтому на практике домагаються лишь возможно более точного совпадения величин напряжений и приблизительного совпадения частот, при котором осуществляется плавное изменение угла между векторами напряжения генератора и напряжения сети. Уловив момент, когда U г и U с находятся в противофазе, делают включение генератора на сеть.

Для определения момента времени включения генератора на параллельную работу с сетью применяются разные автоматические устройства синхронизации. Наиболее простым является ламповый синхроноскоп.

Синхроноскоп, схема которого приведена на рис. 3.1, состоит из трех ламп, рассчитанных на кратковременную работу при удвоенном фазном напряжении сети; с его помощью можно включить СГ в сеть в момент времени, близкий к режиму точной синхронизации.

Для этого необходимо собрать схему по рис.3.1 (на одновременное погасание ). Основными узлами и элементами схемы являются: сеть, синхронный генератор G , приводной двигатель M , ламповый синхроноскоп ЛС и комплект измерительных приборов К-50 .

Сеть ~220 В

Рисунок 3.1 – Схема исследования паралельной работы синхронного генератора с сетью

Порядок выполнения работы

После сборки схемы (рис. 3.1) включают автомат АП3 и выполняют пуск асинхронного двигателя, который соединен с валом индуктора синхронного генератора. Частота вращения ротора асинхронного двигателя почти равна номинальной частоте вращения индуктора (в условиях лаборатории это примерно 1500 об/мин). Потом включают автомат АП2 и доводят ток возбуждения синхронного генератора до величины, при которой напряжение по показаниям вольтметра комплекта К-50 станет равным фазному значению напряжения сети. В результате при включенном автомате АП2 лампы синхроноскопа выявляются включенными между линейными проводами сети и генератора. Если порядок следования фаз сети и генератора одинаков, тогда лампы загораются одновременно и гаснут одновременно.

Если чередование фаз сети и генератора разное, то лампы загораются и погасают по очереди. В этом случае необходимо остановить генератор и поменять местами два каких-нибудь линейных провода, которые идут от зажимов генератора к комплекту К-50 (следовательно, к сети). Затем снова запускают генератор и проверяют соответствие очередности фаз генератора и сети.

Загорание и погасание ламп синхроноскопа осуществляется за счет изменения разбежности потенциалов между одноименными зажимами АП2 и генератора, обусловленного разбежностью частоты сети и генератора при несинхронной частоте вращения генератора. Включение генератора на параллельную работу с сетью с помощью автомата АП1 выполняется в момент погасания ламп. При этом частота погасания и загорания ламп должна быть такой, чтобы лампы загорались и потухали одновременно через 1-2 секунды, что достигается изменением частоты вращения приводного двигателя.

Недостатком этого метода является то, что лампы потухают при разнице напряжений на зажимах ламп 30% U н и при включении генератора в сеть возникает ударный ток. Для исключения ударного тока и установления момента полного погасания ламп, при котором требуется включить АП1 , можно установить по показанию вольтметра V , включенного параллельно одной из ламп. В момент времени, когда напряжение на лампе будет отсутствовать (вольтметр покажет ноль) синхронный генератор включают в сеть.

Критерием удачного включения генератора в сеть служит отсутствие броска тока, что наблюдается по амперметру К-50 . При неточном включении бросок тока может достигать большой величины.

После включения генератора он втягивается в синхронизм и работает синхронно с сетью.

Лампы синхроноскопа можно включить на "бегущий огонь" (вращающийся свет). Для этого присоединение ламп Л2 и Л3 к сети (генератору) изменяют так, как показано на рис. 3.1 штриховыми линиями. Лампы будут загораться и потухать в определенной последовательности. При размещении их по вершинах треугольника создается впечатление вращающегося света. Направление вращения света зависит от того, какая частота больше, – генератора или сети. Включение генератора в сеть выполняется в тот момент времени, когда лампа Л1 целиком гаснет, а две другие горят. Если при включении синхроноскопа на "бегущий свет" лампы одновременно гаснут и затем одновременно загораются – это значит, что порядок прохождения фаз генератора и сети не совпадает.

2.2. Метод самосинхронизации. Широко применяется метод самосинхронизации, названный также методом грубой синхронизации. Это стало возможным благодаря тому, что сети у нас достаточно большой мощности и включение одного генератора не влияет на работу других генераторов, которые параллельно работают на эту сеть с U = U 1н = const и f = f 1н = const .

Метод состоит в следующем. Синхронный генератор после проверки правильности чередования фаз генератора и сети приводят во вращение приблизительно с синхронной частотой вращения; обмотка возбуждения при этом замкнута накоротко. При достижении подсинхронной частоты вращения включают обмотку якоря в сеть с одновременной подачей тока возбуждения в обмотку возбуждения, поступательно увеличивая до значения, при котором генератор втягивается в синхронизм и работает параллельно с сетью в режиме холостого хода.

U-образные характеристики синхронного генератора

U -образные характеристики определяют зависимость тока статора от тока возбуждения і в при постоянной активной мощности генератора (рис. 3.2). В условиях лаборатории характеристику снимают при величине активной мощности генератора, равной нулю, т.е. в режиме холостого хода Р 1 = 0 . Для этого непосредственно после включения генератора на параллельную работу изменением тока возбуждения приводного двигателя и тока возбуждения СГ достигают режима, при котором показания амперметра в цепи генератора будут близкими к 0 , что соответствует режиму холостого хода генератора.

Затем, изменив і в генератора до величины, при которой ток І 1 в статоре станет равным номинальному или немного больше его, записывают первую точку U -образной характеристики. Постепенно увеличивая і в генератора, снимают 3-4 точки левой области кривой І 1 = f(і в) . Обязательно зафиксировать точку U -образной характеристики при минимальном токе статора генератора. Затем, увеличивая і в генератора, снимают точки правой части кривой І 1 = f(і в) .

0,5

Рисунок 3.2 – U-образная характеристика синхронного генератора

Опыт проводить при изменении тока возбуждения от 1 до 10 А.

Правая часть кривой соответствует перевозбужденной машине и отдаче в сеть емкостного тока и реактивной мощности, а левые части – недовозбужденной машине и отдаче в сеть индуктивного тока и потреблению реактивной мощности.

Показания приборов записывают в табл.3.1.

Таблица 3.1 U -образная характеристика синхронного генератора

при U 1 = ... = const, n = n н = const

Р 1 = 0 I 1 , A
i в, А

Контрольные вопросы

1. Какими методами можно включить СГ на параллельную работу с сетью? В чем состоит расхождение методов?

2. Как включить СГ в сеть по методу точной синхронизации?

3. Как включить СГ в сеть по методу самосинхронизации?

4. Какое назначение синхроноскопа?

5. Как проверяется совпадение чередования фаз генератора и сети?

6. Поясните последовательность операций при снятии U -образных характеристик на исследуемой машине при Р 1 = 0.

7. Как по U -образной характеристике рассчитать и построить зависимость cosj от тока возбуждения?

8. Какая фаза тока І 1 , соответствующего минимуму U -образной характеристики синхронного генератора?

9. Почему с увеличением активной мощности Р минимумы кривых смещаются вправо?

10. Какая фаза тока недовозбужденного и перевозбудженного генератора относительно напряжения сети?

11. Поясните – при перевозбуждении или при недовозбуждении СГ отдает реактивную мощность в сеть?

12. Что обозначает угол нагрузки q и от чего зависит его величина?

В отчете представить:

1. Цель работы, оборудование и приборы, содержание работы.

2. Электрическую схему опыта для проведения исследования.

3. Условия, которые требуется выполнить при включении генератора в сеть.

4. Таблицу измеряемых величин для построения U-образной характеристики.

5. График U-образной характеристики.

6. Письменные ответы на контрольные вопросы 1,2,3,4,5,6,7,8.


ЛабораторнаЯ рАбота 4


Похожая информация.


На электрических станциях всегда устанавливают несколько турбо- или гидроагрегатов, которые работают совместно в параллельном соединении на общие шины генераторного или повышенного напряжения.

В результате этого выработка электроэнергии на электростанциях производится несколькими параллельно работающими генераторами и такая совместная их работа имеет много ценных преимуществ.

1. повышает гибкость эксплуатации оборудования электростанций и подстанций, облегчает проведение планово-предупредительных ремонтов генераторов, основного оборудования и соответствующих РУ при минимуме необходимого резерва.

2. повышает экономичность работы электростанции, так как дает возможность распределять наиболее рационально суточный график нагрузки между агрегатами, чем достигается наилучшее использование мощности и повышается к. п. д.; на ГЭС дает возможность наиболее полно использовать мощность водяного потока в период паводков и летней и зимней межени;

3. повышает надежность и бесперебойность работы электростанций и электроснабжения потребителей.


Рис. 1. Принципиальная схема параллельной работы генераторов

Для увеличения производства и улучшения распределения электроэнергии многие электростанции объединяются для параллельной работы в мощные энергетические системы.

В нормальном режиме эксплуатации генераторы присоединены на общие шины (генераторного или повышенного напряжения) и вращаются синхронно. Их роторы вращаются с одинаковой угловой электрической скоростью

При параллельной работе мгновенные значения напряжений на выводах обоих генераторов должны быть равны по величине и обратны по знаку.

Для подключения генератора на параллельную работу с другим генератором (или с сетью) нужно произвести его синхронизацию, т. е. отрегулировать скорость вращения и возбуждение подключаемого генератора в соответствии с работающим.

Генераторы, работающий и включаемый на параллельную работу, должны быть сфазированы, т. е. иметь одинаковый порядок чередования фаз.

Как видно из рис. 1, при параллельной работе генераторы по отношению друг к другу включены навстречу, т. е. их напряжения U1 и U2 на выключателе будут прямо противоположны. По отношению же к нагрузке генераторы работают согласно, т. е. их напряжения U1 и U2 совпадают. Эти условия параллельной работы генераторов отражены на диаграммах рис. 2.


Рис. 2. Условия включения генераторов на параллельную работу. Напряжения генераторов равны по величине и противоположны по фазе.

Существуют два метода синхронизации генераторов: точная синхронизация и грубая синхронизация, или самосинхронизация.

Условия точной синхронизации генераторов.

При точной синхронизации возбужденный генератор подключают к сети (шинам) выключателем В (рис. 1) при достижении условий синхронизма - равенства мгновенных значений их напряжений U1 = U2

При раздельной работе генераторов их мгновенные фазные напряжения будут соответственно равны:

Отсюда вытекают условия, необходимые для параллельного включения генераторов. Для включаемого и работающего генераторов требуется:

1. равенство действующих значений напряжений U1 = U2

2. равенство угловых частот ω1 = ω2 или f1 = f2

3. совпадение напряжений по фазе ψ1 = ψ2 или Θ= ψ1 -ψ2 =0.

Точное выполнение этих требований создает идеальные условия, которые характеризуются тем, что в момент включения генератора уравнительный ток статора будет равен нулю. Однако следует отметить, что выполнение условий точной синхронизации требует тщательной подгонки сравниваемых величин напряжения частоты и фазных углов напряжения генераторов.

В связи с этим на практике невозможно полностью выполнить идеальные условия синхронизации; они выполняются приближенно, с некоторыми небольшими отклонениями. При невыполнении одного из указанных выше условий, когда U2, на выводах разомкнутого выключателя связи В будет действовать разность напряжений:


Рис. 3. Векторные диаграммы для случаев отклонения от условий точной синхронизации: а - Действующие напряжения генераторов не равны; б - угловые частоты не равны.

При включении выключателя под действием этой разности потенциалов в цепи потечет уравнительный ток, периодическая составляющая которого в начальный момент будет

Рассмотрим два случая отклонения от условий точной синхронизации, показанные на диаграмме (рис. 3):

1. действующие напряжения генераторов U1 и U2 не равны, остальные условия соблюдаются;

2. генераторы имеют одинаковые напряжения, но вращаются с разными скоростями, т. е. их угловые частоты ω1 и ω2 не равны, и имеет место несовпадение напряжений по фазе.

Как видно из диаграммы на рис. 3, а, неравенство действующих значений напряжений U1 и U2 обусловливает возникновение уравнительного тока I”ур, который будет почти чисто индуктивным, так как активные сопротивления генераторов и соединительных проводников сети весьма малы и ими пренебрегают. Этот ток не создает толчков активной мощности, а, следовательно, и механических напряжений в деталях генератора и турбины. В связи с этим при включении генераторов на параллельную работу разность напряжений может быть допущена до 5-10%, а в аварийных случаях - до 20%.

При равенстве действующих значений напряжений U1 = U2, но при расхождении угловых частот Δω=ω1 – ω2 ≠ 0 или Δf=f1 – f2 ≠ 0 происходит смещение векторов напряжений генераторов и сети (или 2-го генератора) на некоторый угол Θ, меняющийся во времени. Напряжения генераторов U1 и U2 в рассматриваемом случае будут отличаться по фазе не на угол 180°, а на угол 180°-Θ (рис. 3, б).

На выводах разомкнутого выключателя В, между точками а и б, будет действовать разность напряжений ΔU. Как и в предыдущем случае, наличие напряжения может быть установлено при помощи электрической лампочки, а действующую величину этого напряжения можно измерить вольтметром, включенным между точками а и б.

Если замкнуть выключатель В, то под действием разности напряжений ΔU возникает уравнительный ток I”ур, который в отношении U2 будет почти чисто активным и при включении генераторов на параллельную работу вызовет сотрясения и механические напряжения в валах и других деталях генератора и турбины.

При ω1 ≠ ω2 синхронизация получается вполне удовлетворительной, если скольжение s0

Вследствие инерционности регуляторов турбины нельзя осуществить длительное равенство угловых частот ω1 = ω2, и угол Θ между векторами напряжений, характеризующий относительное положение обмоток статора и ротора генераторов, не остается постоянным, а непрерывно меняется; его мгновенное значение будет Θ=Δωt.

На векторной диаграмме (рис. 4) последнее обстоятельство выразится в том, что с изменением угла сдвига фаз в между векторами напряжений U1 и U2 будет также изменяться ΔU. Разность напряжений при этом ΔU называется напряжением биений.

Рис. 4. Векторная диаграмма синхронизации генераторов при неравенстве частот.

Мгновенное значение напряжений биений Δu представляет собой разность мгновенных значений напряжений u1 и u2 генераторов (рис. 5).

Предположим, что достигнуто равенство действующих значений U1=U2, фазные углы начала отсчета времени ψ1 и ψ2 тоже равны.

Тогда можно написать

Кривая изменения напряжения биений показана на рис.5.

Для включения синхронного генератора на параллельную работу необходимо выполнить следующие условия:

1. Напряжение подключаемой машины должно быть равно напряжению сети или работающей машины.
2. Частота подключаемого генератора должна быть равна частоте сети.
3. Напряжения всех фаз подключаемой машины должны быть противоположны по фазе напряжениям соответствующих фаз сети или работающей машины.
4. Для подключения на параллельную работу трехфазного синхронного генератора необходимо также обеспечить одинаковое чередование фаз подключаемой машины и сети.

Подготовку к включению на параллельную работу синхронного генератора ведут следующим образом. Приводят во вращение первичный двигатель и регулируют его скорость вращения так, чтобы она была примерно равна номинальной. Затем возбуждают генератор и, следя за показаниями вольтметра, под-

ключенного к зажимам статора, регулируют напряжение машины при помощи реостата в цепи возбуждения до тех пор, пока оно не станет равным напряжению сети. Воздействуя на регулятор первичного двигателя и наблюдая за показаниями частотомера, устанавливают более точно скорость машины так, чтобы частота генератора была равна частоте сети. Тем самым первое и второе условия для включения на параллельную работу будут выполнены.

Для выполнения третьего условия, а также для установления полного равенства частот служат фазные лампы. Фазные лампы для машин однофазного тока включаются по двум схемам: на потухание (фиг. 255, а) и на горение (фиг. 255, б). При совпадении фаз сети и машины лампы, включенные по схеме а, погаснут, а по схеме б будут гореть полным накалом. В этот момент и нужно включить рубильник генератора.

Для машин трехфазного тока фазные лампы включаются также по двум схемам: на потухание (фиг. 256, а) и на вращение света (фиг. 256, б). Лампы, включенные по схеме а, при одинаковом чередовании фаз сети и машины будут сначала быстро и одновременно мигать, затем мигание их становится все реже и реже и, когда лампы медленно погаснут, нужно включить рубильник генератора.

Для более точного определения момента включения рубильника часто ставят так называемый нулевой вольтметр, имеющий двустороннюю шкалу.

При одинаковом чередовании фаз сети и машины лампы, включенные по схеме б, будут мигать поочередно, и если их расположить по кругу, то получится впечатление вращающегося света. Скорость вращения света зависит от разности частот. Генератор нужно включить в момент, когда лампы, включенные накрест, загорятся полным накалом, а третья лампа погаснет. Иначе говоря, рубильник удобнее включить в момент, когда меняется направление вращения света.

При неодинаковом порядке чередования фаз лампы, включенные по схеме а, дадут вращение света, а по схеме б будут одновременно загораться и потухать. Для изменения порядка чередования фаз машины два любых ее провода, подходящие к рубильнику, нужно поменять местами.

Включение фазных ламп высоковольтных генераторов осуществляется через измерительные трансформаторы напряжения (гл. четырнадцатая, 171).

Таким образом, с помощью фазных ламп мы можем определить противоположность фаз, установить равенство частот и порядок чередования фаз сети и подключаемой машины. Чередование фаз машины можно также определить, пользуясь особым прибором - фазоуказателем, представляющим собой небольшой асинхронный двигатель-Направление вращения диска фазоуказателя показывает порядок чередования фаз.

Когда синхронный генератор работает параллельно с сетью, скорость вращения его остается постоянной, равной синхронной.

Процесс подготовки генератора для включения его на параллельную работу называется синхронизацией.

В последние годы получил распространение метод включения синхронных генераторов на параллельную работу, называемый самосинхронизацией. Сущность этого метода заключается в следующем. Первичным двигателем разворачивают генератор и устанавливают приблизительно синхронную скорость. Замыкают обмотку возбуждения на дополнительное

сопротивление, равное 3-5-кратному значению ее сопро тивления. Включают рубильник, соединяющий генератор с сетью. Переключают обмотку возбуждения с дополнительного сопротивления к питающему ее источнику постоянного напряжения. После этого генератор сам входит в синхронизм.

Проделаем следующий опыт. В цепь статора синхронного генератора включим амперметр, ваттметр и фазометр. В цепь возбуждения генератора включим амперметр. Включим гене-

Ратор на параллельную работу и дадим ему некоторую активную нагрузку. Увеличивая ток возбуждения при помощи реостата в цепи возбуждения, будем наблюдать показания приборов. Оказывается, что активная мощность, отдаваемая генератором в сеть, остается практически постоянной и во время опыта ваттметр будет давать неизменные показания. При неизменной активной нагрузке ток в цепи статора при некотором значении тока возбуждения получается минимальным. Это соответствует чисто активному току нагрузки генератора ( =1). Если к генератору подключить различные активные нагрузки, то каждому значению активной нагрузки будет соответствовать определенный ток возбуждения, при котором =1. При увеличении тока возбуждения сверх этого значения возникает отстающий реактивный ток. Фазометр будет показывать уменьшение и генератор будет отдавать в сеть отстающую реактивную мощность. Наоборот, если уменьшать ток возбуждения и сделать его меньшим указанного значения, то появится опережающий реактивный ток. Фазометр снова покажет уменьшение , и генератор будет для создания своего вращающегося поля потреблять из сети отстающую реактивную мощность.

Зависимость тока статора (якоря) синхронного генератора от тока возбуждения при постоянной активной мощности называется U-образной характеристикой машины, получившей свое название за внешний вид кривой, напоминающей букву U. На фиг. 257 показана U-образная характеристика синхронного генератора.



Просмотров