Топологии локальных сетей. Топология компьютерной сети

Локальная сеть - важный элемент любого современного предприятия, без которого невозможно добиться максимальной производительности труда. Однако чтобы использовать возможности сетей на полную мощность, необходимо их правильно настроить, учитывая также и то, что расположение подсоединенных компьютеров будет влиять на производительность ЛВС.

Понятие топологии

Топология локальных компьютерных сетей - это месторасположение рабочих станций и узлов относительно друг друга и варианты их соединения. Фактически это архитектура ЛВС. Размещение компьютеров определяет технические характеристики сети, и выбор любого вида топологии повлияет на:

  • Разновидности и характеристики сетевого оборудования.
  • Надежность и возможность масштабирования ЛВС.
  • Способ управления локальной сетью.

Таких вариантов расположения рабочих узлов и способов их соединения много, и количество их увеличивается прямо пропорционально повышению числа подсоединенных компьютеров. Основные топологии локальных сетей - это "звезда", "шина" и "кольцо".

Факторы, которые следует учесть при выборе топологии

До того как окончательно определиться с выбором топологии, необходимо учесть несколько особенностей, влияющих на работоспособность сети. Опираясь на них, можно подобрать наиболее подходящую топологию, анализируя достоинства и недостатки каждой из них и соотнеся эти данные с имеющимися для монтажа условиями.

  • Работоспособность и исправность каждой из рабочих станций, подсоединенных к ЛВС. Некоторые виды топологии локальной сети целиком зависят от этого.
  • Исправность оборудования (маршрутизаторов, адаптеров и т. д.). Поломка сетевого оборудования может как полностью нарушить работу ЛВС, так и остановить обмен информацией с одним компьютером.
  • Надежность используемого кабеля. Повреждение его нарушает передачу и прием данных по всей ЛВС или же по одному ее сегменту.
  • Ограничение длины кабеля. Этот фактор также важен при выборе топологии. Если кабеля в наличии немного, можно выбрать такой способ расположения, при котором его потребуется меньше.

О топологии «звезда»

Этот вид расположения рабочих станций имеет выделенный центр - сервер, к которому подсоединены все остальные компьютеры. Именно через сервер происходят процессы обмена данными. Поэтому оборудование его должно быть более сложным.

Достоинства:

  • Топология локальных сетей "звезда" выгодно отличается от других полным отсутствием конфликтов в ЛВС - это достигается за счет централизованного управления.
  • Поломка одного из узлов или повреждение кабеля не окажет никакого влияния на сеть в целом.
  • Наличие только двух абонентов, основного и периферийного, позволяет упростить сетевое оборудование.
  • Скопление точек подключения в небольшом радиусе упрощает процесс контроля сети, а также позволяет повысить ее безопасность путем ограничения доступа посторонних.

Недостатки:

  • Такая локальная сеть в случае отказа центрального сервера полностью становится неработоспособной.
  • Стоимость "звезды" выше, чем остальных топологий, поскольку кабеля требуется гораздо больше.

Топология «шина»: просто и дешево

В этом способе соединения все рабочие станции подключены к единственной линии - коаксиальному кабелю, а данные от одного абонента отсылаются остальным в режиме полудуплексного обмена. Топологии локальных сетей подобного вида предполагают наличие на каждом конце шины специального терминатора, без которого сигнал искажается.

Достоинства:

  • Все компьютеры равноправны.
  • Возможность легкого масштабирования сети даже во время ее работы.
  • Выход из строя одного узла не оказывает влияния на остальные.
  • Расход кабеля существенно уменьшен.

Недостатки:

  • Недостаточная надежность сети из-за проблем с разъемами кабеля.
  • Маленькая производительность, обусловленная разделением канала между всеми абонентами.
  • Сложность управления и обнаружения неисправностей за счет параллельно включенных адаптеров.
  • Длина линии связи ограничена, потому эти виды топологии локальной сети применяют только для небольшого количества компьютеров.

Характеристики топологии «кольцо»

Такой вид связи предполагает соединение рабочего узла с двумя другими, от одного из них принимаются данные, а второму передаются. Главной же особенностью этой топологии является то, что каждый терминал выступает в роли ретранслятора, исключая возможность затухания сигнала в ЛВС.

Достоинства:

  • Быстрое создание и настройка этой топологии локальных сетей.
  • Легкое масштабирование, требующее, однако, прекращения работы сети на время установки нового узла.
  • Большое количество возможных абонентов.
  • Устойчивость к перегрузкам и отсутствие сетевых конфликтов.
  • Возможность увеличения сети до огромных размеров за счет ретрансляции сигнала между компьютерами.

Недостатки:

  • Ненадежность сети в целом.
  • Отсутствие устойчивости к повреждениям кабеля, поэтому обычно предусматривается наличие параллельной резервной линии.
  • Большой расход кабеля.

Типы локальных сетей

Выбор топологии локальных сетей также следует производить, основываясь на имеющемся типе ЛВС. Сеть может быть представлена двумя моделями: одноранговой и иерархической. Они не очень отличаются функционально, что позволяет при необходимости переходить от одной из них к другой. Однако несколько различий между ними все же есть.

Что касается одноранговой модели, ее применение рекомендуется в ситуациях, когда возможность организации большой сети отсутствует, но создание какой-либо системы связи все же необходимо. Рекомендуется создавать ее только для небольшого числа компьютеров. Связь с централизованным управлением обычно применяется на различных предприятиях для контроля рабочих станций.

Одноранговая сеть

Этот тип ЛВС подразумевает равноправие каждой рабочей станции, распределяя данные между ними. Доступ к информации, хранящейся на узле, может быть разрешен либо запрещен его пользователем. Как правило, в таких случаях топология локальных компьютерных сетей «шина» будет наиболее подходящей.

Одноранговая сеть подразумевает доступность ресурсов рабочей станции остальным пользователям. Это означает возможность редактирования документа одного компьютера при работе за другим, удаленной распечатки и запуска приложений.

Достоинства однорангового типа ЛВС:

  • Легкость реализации, монтажа и обслуживания.
  • Небольшие финансовые затраты. Такая модель исключает надобность в покупке дорогого сервера.

Недостатки:

  • Быстродействие сети уменьшается пропорционально увеличению количества подсоединенных рабочих узлов.
  • Отсутствует единая система безопасности.
  • Доступность информации: при выключении компьютера данные, находящиеся в нем, станут недоступными для остальных.
  • Нет единой информационной базы.

Иерархическая модель

Наиболее часто используемые топологии локальных сетей основаны именно на этом типе ЛВС. Его еще называют «клиент-сервер». Суть данной модели состоит в том, что при наличии некоторого количества абонентов имеется один главный элемент - сервер. Этот управляющий компьютер хранит все данные и занимается их обработкой.

Достоинства:

  • Отличное быстродействие сети.
  • Единая надежная система безопасности.
  • Одна, общая для всех, информационная база.
  • Облегченное управление всей сетью и ее элементами.

Недостатки:

  • Необходимость наличия специальной кадровой единицы - администратора, который занимается мониторингом и обслуживанием сервера.
  • Большие финансовые затраты на покупку главного компьютера.

Наиболее часто используемая конфигурация (топология) локальной компьютерной сети в иерархической модели - это «звезда».

Выбор топологии (компоновка сетевого оборудования и рабочих станций) является исключительно важным моментом при организации локальной сети. Выбранный вид связи должен обеспечивать максимально эффективную и безопасную работу ЛВС. Немаловажно также уделить внимание финансовым затратам и возможности дальнейшего расширения сети. Найти рациональное решение - непростая задача, которая выполняется благодаря тщательному анализу и ответственному подходу. Именно в таком случае правильно подобранные топологии локальных сетей обеспечат максимальную работоспособность всей ЛВС в целом.

Топология локальных сетей

Под топологией (компоновкой, конфигурацией, структурой) компьютерной сети обычно понимается физическое расположение компьютеров сети друг относительно друга и способ соединения их линиями связи . Важно отметить, что понятие топологии относится, прежде всего, к локальным сетям , в которых структуру связей можно легко проследить. В глобальных сетях структура связей обычно скрыта от пользователей и не слишком важна, так как каждый сеанс связи может производиться по собственному пути.

Топология определяет требования к оборудованию, тип используемого кабеля, допустимые и наиболее удобные методы управления обменом , надежность работы, возможности расширения сети. И хотя выбирать топологию пользователю сети приходится нечасто, знать об особенностях основных топологий , их достоинствах и недостатках надо.

Существует три базовые топологии сети:

· Шина (bus) - все компьютеры параллельно подключаются к одной линии связи . Информация от каждого компьютера одновременно передается всем остальным компьютерам (рис. 1.5).

Рис. 1.5. Сетевая топология шина

· Звезда (star) - к одному центральному компьютеру присоединяются остальные периферийные компьютеры, причем каждый из них использует отдельную линию связи (рис. 1.6). Информация от периферийного компьютера передается только центральному компьютеру, от центрального - одному или нескольким периферийным.

Рис. 1.6. Сетевая топология звезда

· Кольцо (ring) - компьютеры последовательно объединены в кольцо. Передача информации в кольце всегда производится только в одном направлении. Каждый из компьютеров передает информацию только одному компьютеру, следующему в цепочке за ним, а получает информацию только от предыдущего в цепочке компьютера (рис. 1.7).

Рис. 1.7. Сетевая топология кольцо

На практике нередко используют и другие топологии локальных сетей , однако большинство сетей ориентировано именно на три базовые топологии .

Прежде чем перейти к анализу особенностей базовых сетевых топологий , необходимо выделить некоторые важнейшие факторы, влияющие на физическую работоспособность сети и непосредственно связанные с понятием топология .

· Исправность компьютеров (абонентов ), подключенных к сети. В некоторых случаях поломка абонента может заблокировать работу всей сети. Иногда неисправность абонента не влияет на работу сети в целом, не мешает остальным абонентам обмениваться информацией.

· Исправность сетевого оборудования, то есть технических средств, непосредственно подключенных к сети (адаптеры, трансиверы , разъемы и т.д.). Выход из строя сетевого оборудования одного из абонентов может сказаться на всей сети, но может нарушить обмен только с одним абонентом .

· Целостность кабеля сети. При обрыве кабеля сети (например, из-за механических воздействий) может нарушиться обмен информацией во всей сети или в одной из ее частей. Для электрических кабелей столь же критично короткое замыкание в кабеле .

· Ограничение длины кабеля, связанное с затуханием распространяющегося по нему сигнала. Как известно, в любой среде при распространении сигнал ослабляется (затухает). И чем большее расстояние проходит сигнал, тем больше он затухает (рис. 1.8). Необходимо следить, чтобы длина кабеля сети не была больше предельной длины L пр, при превышении которой затухание становится уже неприемлемым (принимающий абонент не распознает ослабевший сигнал).

Рис. 1.8. Затухание сигнала при распространении по сети

Топология шина

Топология шина (или, как ее еще называют, общая шина) самой своей структурой предполагает идентичность сетевого оборудования компьютеров, а также равноправие всех абонентов по доступу к сети. Компьютеры в шине могут передавать информацию только по очереди, так как линия связи в данном случае единственная. Если несколько компьютеров будут передавать информацию одновременно, она исказится в результате наложения (конфликта , коллизии ). В шине всегда реализуется режим так называемого полудуплексного (half duplex ) обмена (в обоих направлениях, но по очереди, а не одновременно).

В топологии шина отсутствует явно выраженный центральный абонент , через которого передается вся информация, это увеличивает ее надежность (ведь при отказе центра перестает функционировать вся управляемая им система). Добавление новых абонентов в шину довольно просто и обычно возможно даже во время работы сети. В большинстве случаев при использовании шины требуется минимальное количество соединительного кабеля по сравнению с другими топологиями .

Поскольку центральный абонент отсутствует, разрешение возможных конфликтов в данном случае ложится на сетевое оборудование каждого отдельного абонента . В связи с этим сетевая аппаратура при топологии шина сложнее, чем при других топологиях . Тем не менее из-за широкого распространения сетей стопологией шина (прежде всего наиболее популярной сети Ethernet) стоимость сетевого оборудования не слишком высока.

Рис. 1.9. Обрыв кабеля в сети с топологией шина

Важное преимущество шины состоит в том, что при отказе любого из компьютеров сети, исправные машины смогут нормально продолжать обмен .

Казалось бы, при обрыве кабеля получаются две вполне работоспособные шины (рис. 1.9). Однако надо учитывать, что из-за особенностей распространения электрических сигналов по длинным линиям связи необходимо предусматривать включение на концах шины специальных согласующих устройств, терминаторов , показанных на рис. 1.5 и 1.9 в виде прямоугольников. Без включения терминаторов сигнал отражается от конца линии и искажается так, что связь по сети становится невозможной. В случае разрыва или повреждения кабеля нарушается согласование линии связи , и прекращается обмен даже между теми компьютерами, которые остались соединенными между собой. Подробнее о согласовании будет изложено в специальном разделе курса. Короткое замыкание в любой точке кабеля шины выводит из строя всю сеть.

Отказ сетевого оборудования любого абонента в шине может вывести из строя всю сеть. К тому же такой отказ довольно трудно локализовать, поскольку все абоненты включены параллельно, и понять, какой из них вышел из строя, невозможно.

При прохождении по линии связи сети с топологией шина информационные сигналы ослабляются и никак не восстанавливаются, что накладывает жесткие ограничения на суммарную длину линий связи . Причем каждый абонент может получать из сети сигналы разного уровня в зависимости от расстояния до передающегоабонента . Это предъявляет дополнительные требования к приемным узлам сетевого оборудования.

Если принять, что сигнал в кабеле сети ослабляется до предельно допустимого уровня на длине L пр, то полная длина шины не может превышать величины L пр. В этом смысле шина обеспечивает наименьшую длину по сравнению с другими базовыми топологиями .

Для увеличения длины сети с топологией шина часто используют несколько сегментов (частей сети, каждый из которых представляет собой шину), соединенных между собой с помощью специальных усилителей и восстановителей сигналов - репитеров или повторителей (на рис. 1.10 показано соединение двух сегментов, предельная длина сети в этом случае возрастает до 2 L пр, так как каждый из сегментов может быть длиной L пр). Однако такое наращивание длины сети не может продолжаться бесконечно. Ограничения на длину связаны с конечной скоростью распространения сигналов по линиям связи .

Рис. 1.10. Соединение сегментов сети типа шина с помощью репитера

Топология звезда

Звезда - это единственная топология сети с явно выделенным центром, к которому подключаются все остальные абоненты . Обмен информацией идет исключительно через центральный компьютер, на который ложится большая нагрузка, поэтому ничем другим, кроме сети, он, как правило, заниматься не может. Понятно, что сетевое оборудование центрального абонента должно быть существенно более сложным, чем оборудование периферийных абонентов . О равноправии всех абонентов (как в шине) в данном случае говорить не приходится. Обычно центральный компьютер самый мощный, именно на него возлагаются все функции по управлению обменом. Никакие конфликты в сети с топологией звезда в принципе невозможны, так как управление полностью централизовано.

Если говорить об устойчивости звезды к отказам компьютеров, то выход из строя периферийного компьютера или его сетевого оборудования никак не отражается на функционировании оставшейся части сети, зато любой отказ центрального компьютера делает сеть полностью неработоспособной. В связи с этим должны приниматься специальные меры по повышению надежности центрального компьютера и его сетевой аппаратуры.

Обрыв кабеля или короткое замыкание в нем при топологии звезда нарушает обмен только с одним компьютером, а все остальные компьютеры могут нормально продолжать работу.

В отличие от шины, в звезде на каждой линии связи находятся только два абонента : центральный и один из периферийных. Чаще всего для их соединения используется две линии связи , каждая из которых передает информацию в одном направлении, то есть на каждой линии связи имеется только один приемник и один передатчик. Это так называемая передача точка-точка . Все это существенно упрощает сетевое оборудование по сравнению с шиной и избавляет от необходимости применения дополнительных, внешних терминаторов .

Проблема затухания сигналов в линии связи также решается в звезде проще, чем в случае шины, ведь каждый приемник всегда получает сигнал одного уровня. Предельная длина сети с топологией звезда может быть вдвое больше, чем в шине (то есть 2 L пр), так как каждый из кабелей, соединяющий центр с периферийнымабонентом , может иметь длину L пр.

Серьезный недостаток топологии звезда состоит в жестком ограничении количества абонентов . Обычно центральный абонент может обслуживать не более 8-16 периферийных абонентов . В этих пределах подключение новых абонентов довольно просто, но за ними оно просто невозможно. В звезде допустимо подключение вместо периферийного еще одного центрального абонента (в результате получается топология из нескольких соединенных между собой звезд).

Звезда, показанная на рис. 1.6, носит название активной или истинной звезды. Существует также топология , называемая пассивной звездой, которая только внешне похожа на звезду (рис. 1.11). В настоящее время она распространена гораздо более широко, чем активная звезда. Достаточно сказать, что она используется в наиболее популярной сегодня сети Ethernet.

В центре сети с данной топологией помещается не компьютер, а специальное устройство - концентратор или, как его еще называют, хаб (hub), которое выполняет ту же функцию, что и репитер , то есть восстанавливает приходящие сигналы и пересылает их во все другие линии связи .

Рис. 1.11. Топология пассивная звезда и ее эквивалентная схема

Получается, что хотя схема прокладки кабелей подобна истинной или активной звезде, фактически речь идет о шинной топологии , так как информация от каждого компьютера одновременно передается ко всем остальным компьютерам, а никакого центрального абонента не существует. Безусловно, пассивная звезда дороже обычной шины, так как в этом случае требуется еще и концентратор. Однако она предоставляет целый ряд дополнительных возможностей, связанных с преимуществами звезды, в частности, упрощает обслуживание и ремонт сети. Именно поэтому в последнее время пассивная звезда все больше вытесняет истинную звезду, которая считается малоперспективной топологией .

Можно выделить также промежуточный тип топологии между активной и пассивной звездой. В этом случае концентратор не только ретранслирует поступающие на него сигналы, но и производит управление обменом , однако сам в обмене не участвует (так сделано в сети 100VG-AnyLAN ).

Большое достоинство звезды (как активной, так и пассивной) состоит в том, что все точки подключения собраны в одном месте. Это позволяет легко контролировать работу сети, локализовать неисправности путем простого отключения от центра тех или иных абонентов (что невозможно, например, в случае шиннойтопологии ), а также ограничивать доступ посторонних лиц к жизненно важным для сети точкам подключения. К периферийному абоненту в случае звезды может подходить как один кабель (по которому идет передача в обоих направлениях), так и два (каждый кабель передает в одном из двух встречных направлений), причем последнее встречается гораздо чаще.

Общим недостатком для всех топологий типа звезда (как активной, так и пассивной) является значительно больший, чем при других топологиях , расход кабеля. Например, если компьютеры расположены в одну линию (как на рис. 1.5), то при выборе топологии звезда понадобится в несколько раз больше кабеля, чем притопологии шина. Это существенно влияет на стоимость сети в целом и заметно усложняет прокладку кабеля.

Топология кольцо

Кольцо - это топология , в которой каждый компьютер соединен линиями связи с двумя другими: от одного он получает информацию, а другому передает. На каждой линии связи , как и в случае звезды, работает только один передатчик и один приемник (связь типа точка-точка). Это позволяет отказаться от применения внешних терминаторов .

Важная особенность кольца состоит в том, что каждый компьютер ретранслирует (восстанавливает, усиливает) приходящий к нему сигнал, то есть выступает в роли репитера. Затухание сигнала во всем кольце не имеет никакого значения, важно только затухание между соседними компьютерами кольца. Если предельная длина кабеля, ограниченная затуханием, составляет L пр, то суммарная длина кольца может достигать NL пр, где N - количество компьютеров в кольце. Полный размер сети в пределе будет NL пр /2, так как кольцо придется сложить вдвое. На практике размеры кольцевых сетей достигают десятков километров (например, в сети FDDI ). Кольцо в этом отношении существенно превосходит любые другие топологии .

Четко выделенного центра при кольцевой топологии нет, все компьютеры могут быть одинаковыми и равноправными. Однако довольно часто в кольце выделяется специальный абонент , который управляет обменом или контролирует его. Понятно, что наличие такого единственного управляющего абонента снижает надежность сети, так как выход его из строя сразу же парализует весь обмен .

Строго говоря, компьютеры в кольце не являются полностью равноправными (в отличие, например, от шинной топологии ). Ведь один из них обязательно получает информацию от компьютера, ведущего передачу в данный момент, раньше, а другие - позже. Именно на этой особенности топологии и строятся методы управления обменом по сети, специально рассчитанные на кольцо. В таких методах право на следующую передачу (или, как еще говорят, на захват сети) переходит последовательно к следующему по кругу компьютеру. Подключение новых абонентов в кольцо выполняется достаточно просто, хотя и требует обязательной остановки работы всей сети на время подключения. Как и в случае шины, максимальное количество абонентов в кольце может быть довольно велико (до тысячи и больше). Кольцевая топология обычно обладает высокой устойчивостью к перегрузкам, обеспечивает уверенную работу с большими потоками передаваемой по сети информации, так как в ней, как правило, нет конфликтов (в отличие от шины), а также отсутствует центральный абонент (в отличие от звезды), который может быть перегружен большими потоками информации.

Рис. 1.12. Сеть с двумя кольцами

Сигнал в кольце проходит последовательно через все компьютеры сети, поэтому выход из строя хотя бы одного из них (или же его сетевого оборудования) нарушает работу сети в целом. Это существенный недостаток кольца.

Точно так же обрыв или короткое замыкание в любом из кабелей кольца делает работу всей сети невозможной. Из трех рассмотренных топологий кольцо наиболее уязвимо к повреждениям кабеля, поэтому в случае топологии кольца обычно предусматривают прокладку двух (или более) параллельных линий связи , одна из которых находится в резерве.

Иногда сеть с топологией кольцо выполняется на основе двух параллельных кольцевых линий связи , передающих информацию в противоположных направлениях (рис. 1.12). Цель подобного решения - увеличение (в идеале - вдвое) скорости передачи информации по сети. К тому же при повреждении одного из кабелей сеть может работать с другим кабелем (правда, предельная скорость уменьшится).

Другие топологии

Кроме трех рассмотренных базовых топологий нередко применяется также сетевая топология дерево (tree), которую можно рассматривать как комбинацию нескольких звезд. Причем, как и в случае звезды, дерево может быть активным или истинным (рис. 1.13) и пассивным (рис. 1.14). При активном дереве в центрах объединения нескольких линий связи находятся центральные компьютеры, а при пассивном - концентраторы (хабы ).

Рис. 1.13. Топология активное дерево

Рис. 1.14. Топология пассивное дерево. К - концентраторы

Довольно часто применяются комбинированные топологии , среди которых наиболее распространены звездно-шинная (рис. 1.15) и звездно-кольцевая (рис. 1.16).

Рис. 1.15. Пример звездно-шинной топологии

Рис. 1.16. Пример звездно-кольцевой топологии

В звездно-шинной (star-bus) топологии используется комбинация шины и пассивной звезды. К концентратору подключаются как отдельные компьютеры, так и целые шинные сегменты. На самом деле реализуется физическая топология шина, включающая все компьютеры сети. В данной топологии может использоваться и несколько концентраторов, соединенных между собой и образующих так называемую магистральную, опорную шину. К каждому из концентраторов при этом подключаются отдельные компьютеры или шинные сегменты. В результате получается звездно-шинное дерево. Таким образом, пользователь может гибко комбинировать преимущества шинной и звездной топологий , а также легко изменять количество компьютеров, подключенных к сети. С точки зрения распространения информации данная топология равноценна классической шине.

В случае звездно-кольцевой (star-ring) топологии в кольцо объединяются не сами компьютеры, а специальные концентраторы (изображенные на рис. 1.16 в виде прямоугольников), к которым в свою очередь подключаются компьютеры с помощью звездообразных двойных линий связи . В действительности все компьютеры сети включаются в замкнутое кольцо, так как внутри концентраторов линии связи образуют замкнутый контур (как показано на рис. 1.16). Данная топология дает возможность комбинировать преимущества звездной и кольцевой топологий . Например, концентраторы позволяют собрать в одно место все точки подключения кабелей сети. Если говорить о распространении информации, данная топология равноценна классическому кольцу.

В заключение надо также сказать о сеточной топологии (mesh), при которой компьютеры связываются между собой не одной, а многими линиями связи , образующими сетку (рис. 1.17).

Рис. 1.17. Сеточная топология: полная (а) и частичная (б)

В полной сеточной топологии каждый компьютер напрямую связан со всеми остальными компьютерами. В этом случае при увеличении числа компьютеров резко возрастает количество линий связи . Кроме того, любое изменение в конфигурации сети требует внесения изменений в сетевую аппаратуру всех компьютеров, поэтому полная сеточная топология не получила широкого распространения.

Частичная сеточная топология предполагает прямые связи только для самых активных компьютеров, передающих максимальные объемы информации. Остальные компьютеры соединяются через промежуточные узлы. Сеточная топология позволяет выбирать маршрут для доставки информации от абонента к абоненту , обходя неисправные участки. С одной стороны, это увеличивает надежность сети, с другой же – требует существенного усложнения сетевой аппаратуры, которая должна выбирать маршрут.

Топология компьютерных сетей

Одним из важнейших различий между разными типами сетей является их топология.

Под топологией обычно понимают взаимное расположение друг относительно друга узлов сети. К узлам сети в данном случае относятся компьютеры, концентраторы, свитчи, маршрутизаторы, точки доступа и т.п.

Топология – это конфигурация физических связей между узлами сети. Характеристики сети зависят от типа устанавливаемой топологии. В частности, выбор той или иной топологии влияет:

  • на состав необходимого сетевого оборудования;
  • на возможности сетевого оборудования;
  • на возможности расширения сети;
  • на способ управления сетью.

Различают следующие основные виды топологий: щит, кольцо, звезда, ячеистая топология и решетка. Остальные являются комбинациями основных топологий и называются смешанными или гибридными.

Шина . Сети с шинной топологией используют линейный моноканал (коаксиальный кабель) передачи данных, на концах которого устанавливаются специальные заглушки – терминаторы (terminator). Они необходимы для того,

Рис. 6.1.

чтобы погасить сигнал после прохождения по шине. К недостаткам шинной топологии следует отнести следующее:

  • данные, передаваемые по кабелю, доступны всем подключенным компьютерам;
  • в случае повреждения шины вся сеть перестает функционировать.

Кольцо – это топология, в которой каждый компьютер соединен линиями связи с двумя другими: от одного он получает информацию, а другому передаст и подразумевает следующий механизм передачи данных: данные передаются последовательно от одного компьютера к другому, пока не достигнут компьютера-получателя. Недостатки топологии "кольцо" те же, что и у топологии "шина":

  • общедоступность данных;
  • неустойчивость к повреждениям кабельной системы.

Звезда – это единственная топология сети с явно выделенным центром, называемым сетевым концентратором или "хабом" (hub), к которому подключаются все остальные абоненты. Функциональность сети зависит от состояния этого концентратора. В топологии "звезда" прямые соединения двух компьютеров в сети отсутствуют. Благодаря этому имеется возможность решения проблемы общедоступности данных, а также повышается устойчивость к повреждениям кабельной системы.

Рис. 6.2.

Рис. 6.3. Топология типа "звезда"

– это топология компьютерной сети, в которой каждая рабочая станция сети соединяется с несколькими рабочими станциями этой же сети. Характеризуется высокой отказоустойчивостью, сложностью настройки и переизбыточным расходом кабеля. Каждый компьютер имеет множество возможных путей соединения с другими компьютерами. Обрыв кабеля не приведет к потере соединения между двумя компьютерами.

Рис. 6.4.

Решетка – это топология, в которой узлы образуют регулярную многомерную решетку. При этом каждое ребро решетки параллельно ее оси и соединяет два смежных узла вдоль этой оси. Одномерная решетка – это цепь, соединяющая два внешних узла (имеющие лишь одного соседа) через некоторое количество внутренних (у которых по два соседа – слева и справа). При соединении обоих внешних узлов получается топология "кольцо". Двух- и трехмерные решетки используются в архитектуре суперкомпьютеров.

Сети, основанные па FDDI, используют топологию "двойное кольцо", достигая тем самым высокой надежности и производительности. Многомерная решетка, соединенная циклически в более чем одном измерении, называется "тор".

(рис. 6.5) – топология, преобладающая в крупных сетях с произвольными связями между компьютерами. В таких сетях можно выделить отдельные произвольно связанные фрагменты (подсети ), имеющие типовою топологию, поэтому их называют сетями со смешанной топологией.

Для подключения большого числа узлов сети применяют сетевые усилители и (или) коммутаторы. Также применяются активные концентраторы – коммутаторы, одновременно обладающие и функциями усилителя. На практике используют два вида активных концентраторов, обеспечивающих подключение 8 или 16 линий.

Рис. 6.5.

Другой тип коммутационного устройства – пассивный концентратор, который позволяет организовать разветвление сети для трех рабочих станций. Малое число присоединяемых узлов означает, что пассивный концентратор не нуждается в усилителе. Такие концентраторы применяются в тех случаях, когда расстояние до рабочей станции не превышает нескольких десятков метров.

По сравнению с шинной или кольцевой смешанная топология обладает большей надежностью. Выход из строя одного из компонентов сети в большинстве случаев не оказывает влияния на общую работоспособность сети.

Рассмотренные выше топологии локальных сетей являются основными, т. е. базовыми. Реальные вычислительные сети строят, основываясь на задачах, которые призвана решить данная локальная сеть, и па структуре ее информационных потоков. Таким образом, на практике топология вычислительных сетей представляет собой синтез традиционных типов топологий.

Основные характеристики современных компьютерных сетей

Качество работы сети характеризуют следующие свойства: производительность, надежность, совместимость, управляемость, защищенность, расширяемость и масштабируемость.

К основным характеристикам производительности сети относятся:

  • время реакции – характеристика, которая определяется как время между возникновением запроса к какому-либо сетевому сервису и получением ответа на него;
  • пропускная способность – характеристика, которая отражает объем данных, переданных сетью в единицу времени;
  • задержка передачи – интервал между моментом поступления пакета на вход какого-либо сетевого устройства и моментом его появления на выходе этого устройства.

Для оценки надежности сетей используются различные характеристики, в том числе:

  • коэффициент готовности, означающий долю времени, в течение которого система может быть использована;
  • безопасность, т.е. способность системы защитить данные от несанкционированного доступа;
  • отказоустойчивость – способность системы работать в условиях отказа некоторых ее элементов.

Расширяемость означает возможность сравнительно легкого добавления отдельных элементов сети (пользователей, компьютеров, приложений, сервисов), наращивания длины сегментов сети и замены существующей аппаратуры более мощной.

Масштабируемость означает, что сеть позволяет наращивать количество узлов и протяженность связей в очень широких пределах, при этом производительность сети не ухудшается.

Прозрачность – свойство сети скрывать от пользователя детали своего внутреннего устройства, упрощая тем самым его работу в сети.

Управляемость сети подразумевает возможность централизованно контролировать состояние основных элементов сети, выявлять и разрешать проблемы, возникающие при работе сети, выполнять анализ производительности и планировать развитие сети.

Совместимость означает, что сеть способна включать в себя самое разнообразное программное и аппаратное обеспечение.

При организации компьютерной сети исключительно важным является выбор топологии, т. е. компоновки сетевых устройств и кабельной инфраструктуры. Нужно выбрать такую топологию, которая обеспечила бы надежную и эффективную работу сети, удобное управление потоками сетевых данных. Желательно также, чтобы сеть по стоимости создания и сопровождения получилась недорогой, но в то же время оставались возможности для ее дальнейшего расширения и, желательно, для перехода к более высокоскоростным технологиям связи.

Все соединения с сети осуществляются посредством специальных сетевых кабелей. Основными характеристиками сетевого кабеля являются скорость передачи данных и максимально допустимая длина. Обе характеристики определяются физическими свойствами кабеля.

В качестве сетевого кабеля могут применяться и телефонные линии.

Основные типы сетевого кабеля:

    Витая пара - позволяет передавать информацию со скоростью 10 Мбит/с (либо 100 Мбит/с), легко наращивается. Длина кабеля не может превышать 1000 м при скорости передачи 10 Мбит/с. Иногда используют экранированную витую пару, т. е. витую пару, помещенную в экранирующую оболочку.

    Толстый Ethernet - коаксиальный кабель с волновым сопротивлением 50 Ом. Обладает высокой помехозащищенностью. Максимально доступное расстояние без повторителя не превышает 500 м, а общее расстояние сети Ethernet - около 3000м.

    Тонкий Ethernet - это также 50-омный коаксиальный кабель со скоростью передачи информации в 10 Мбит/с. Соединения с сетевыми платами производятся при помощи специальных (байонетных) разъемов и тройниковых соединений. Расстояние между двумя рабочими станциями без повторителей может составлять максимум 185м, а общее расстояние по сети - 1000м.

    Оптоволоконные линии - наиболее дорогой тип кабеля. Скорость передачи по ним информации достигает нескольких гигабит в секунду. Допустимое удаление более 50 км. Внешнее воздействие помех практически отсутствует.

Существует три базовые топологии , на основе которых строится большинство сетей.

1.«Шина» (Bus). В этой топологии все компьютеры соединяются друг с другом одним кабелем (Рис. 5.8). Посланные в такую сеть данные передаются всем компьютерам, но обрабатывает их только тот компьютер, аппаратный МАС-адрес сетевого адаптера которого записан в кадре как адрес получателя.

Рис 5.8. Сеть с топологией «шина»

Эта топология исключительно проста в реализации и дешева (требует меньше всего кабеля), однако имеет ряд существенных недостатков.

Недостатки сетей типа «шина»

    Такие сети трудно расширять (увеличивать число компьютеров в сети и количество сегментов - отдельных отрезков кабеля, их соединяющих).

    Поскольку шина используется совместно, в каждый момент времени передачу может вести только один из компьютеров . Если передачу одновременно начинают два или больше компьютеров, возникает искажение сигнала {столкновение, иликоллизия ), приводящее к повреждению всех кадров. Тогда компьютеры вынуждены приостанавливать передачу, а затем по очереди ретранслировать данные. Влияние столкновений тем заметнее, чем выше объем передаваемой по сети информации и чем больше компьютеров подключено к шине. Оба этих фактора, естественно, снижают как максимально возможную, так и общую производительность сети, замедляя ее работу.

    «Шина» является пассивной топологией - компьютеры только «слушают» кабель и не могут восстанавливать затухающие при передаче по сети сигналы. Чтобы удлинить сеть, нужно использовать повторители (репитеры), усиливающие сигнал перед его передачей в следующий сегмент.

    Надежность сети с топологией «шина» невысока . Когда электрический сигнал достигает конца кабеля, он (если не приняты специальные меры) отражается, нарушая работу всего сегмента сети. Чтобы предотвратить такое отражение сигналов, на концах кабеля устанавливаются специальныерезисторы (терминаторы), поглощающие сигналы. Если же в любом месте кабеля возникает обрыв - например, при нарушении целостности кабеля или просто при отсоединении коннектора, - то возникают два незатерминированных сегмента, на концах которых сигналы начинают отражаться, и вся сеть перестает работать.

Проблемы, характерные для топологии «шина», привели к тому, что эти сети, столь популярные еще десять лет назад, сейчас уже практически не используются.

2. «Кольцо» (Ring ). В данной топологии каждый из компьютеров соединяется с двумя другими так, чтобы от одного он получал информацию, а второму - передавал ее (Рис. 5.9). Последний компьютер подключается к первому, и кольцозамыкается .

Рис. 5.9. Сеть с топологией «кольцо»

Преимущества сетей с топологией «кольцо»:

    поскольку у кабелей в этой сети нет свободных концов, терминаторы здесь не нужны;

    каждый из компьютеров выступает в роли повторителя, усиливая сигнал, что позволяет строить сети большой протяженности;

    из-за отсутствия столкновений топология обладает высокой устойчивостью к перегрузкам, обеспечивая эффективную работу с большими потоками передаваемой по сети информации

Недостатки:

    сигнал в «кольце» должен пройти последовательно (и только в одном направлении) через все компьютеры, каждый из которых проверяет, не ему ли адресована информация, поэтому время передачи может быть достаточно большим;

    подключение к сети нового компьютера часто требует ее остановки, что нарушает работу всех других компьютеров;

    выход из строя хотя бы одного из компьютеров или устройств нарушает работу всей сети;

    обрыв или короткое замыкание в любом из кабелей кольца делает работу всей сети невозможной;

    чтобы избежать остановки работы сети при отказе компьютеров или обрыве кабеля, обычно прокладывают два кольца, что существенно удорожает сеть.

Здесь, так же как и для сетей с топологией «шина», недостатки несколько перевешивают достоинства, в результате чего популярные ранее кольцевые сети теперь используются гораздо реже.

3. Активная топология «звезда» (Active Star). Эта топология возникла на заре вычислительной техники, когда к мощному центральному компьютеру подключались все остальные абоненты сети. В такой конфигурации все потоки данных шли исключительно через центральный компьютер; он же полностью отвечал за управление информационным обменом между всеми участниками сети. Конфликты при такой организации взаимодействия в сети были невозможны, однако нагрузка на центральный компьютер была столь велика, что ничем другим, кроме обслуживания сети, этот компьютер, как правило, не занимался. Выход его из строя приводил к отказу всей сети, тогда как отказ периферийного компьютера или обрыв связи с ним на работе остальной сети не сказывался. Сейчас такие сети встречаются довольно редко.

Гораздо более распространенной сегодня топологией является похожий вариант - «звезда-шина» (Star Bus), или «пассивная звезда» (Рис. 5.10). Здесь периферийные компьютеры подключаются не к центральному компьютеру, а к пассивному концентратору, или хабу (hub). Последний, в отличие от центрального компьютера, никак не отвечает за управ¬ление обменом данными, а выполняет те же функции, что и повторитель, то есть восстанавливает приходящие сигналы и пересылает их всем остальным подключенным к нему компьютерам и устройствам. Именно поэтому данная топология, хотя физически и выглядит как «звезда», логически является топологией «шина» (что и отражено в ее названии).

Рис. 5.10. Сеть с топологией «звезда-шина»

Несмотря на больший расход кабеля, характерный для сетей типа «звезда», эта топология имеет существенные преимущества перед остальными, что и обусловило ее широчайшее применение в современных сетях.

Преимущества сетей типа «звезда-шина»:

    Надежность - подключение к центральному концентратору и отключение компьютеров от него никак не отражается на работе остальной сети; обрывы кабеля влияют только на единичные компьютеры;

    Легкость при обслуживании и устранении проблем - все компьютеры и сетевые устройства подключаются к центральному соединительному устройству, что существенно упрощает обслуживание и ремонт сети.

    Защищенность - концентрация точек подключения в одном месте позволяет легко ограничить доступ к жизненно важным объектам сети.

Отметим, что при использовании вместо концентраторов более «интеллектуальных» сетевых устройств (мостов, коммутаторов и маршрутизаторов - подробнее о них будет рассказано позже) получается «промежуточный» тип топологии между активной и пассивной звездой. В этом случае устройство связи не только ретранслирует поступающие сигналы, но и производит управление их обменом.

Другие возможные сетевые топологии

Реальные компьютерные сети постоянно расширяются и модернизируются. Поэтому почти всегда такая сеть является гибридной, т. е. ее топология представляет собой комбинацию нескольких базовых топологий. Легко представить себе гибридные топологии, являющиеся комбинацией «звезды» и «шины», либо «кольца» и «звезды».

Однако особо следует выделить топологию «дерево» (tree), которую можно рассматривать как объединение нескольких «звезд» (рис. 5.4). Именно эта топология сегодня является наиболее популярной при построении локальных сетей.

Рис. 5.11. Сеть с топологией «дерево»

На уровне самого общего представления любая сеть состоит из совокупности пунктов и соединяющих их линий, взаимное расположение которых характеризует связность сети и способность к обеспечению информационного обмена между различными адресатами. Структура, отображающая расположение пунктов сети и связывающих их линий называетсятопологией сети. Различаютфизическую топологию илогическую .Физическая топология отображает размещение пунктов в пространстве и конфигурацию линий связи .Логическая топология дает представление о путях перемещения информационных сообщений в сети от источников к приемнникам на основе адресной информации.

Рисунок 1 . Системное описание архитектуры сети

Для исследования топологических особенностей сети ее удобно изображать в виде точек и соединяющих их дуг . Такая геометрическая фигура носит название граф. Точки в графе именуются вершинами, а дуги, если не учитывается их направленность, – ребрами. Граф является моделью топологическойструктуры информационной сети. Выбор топологии является наипервейшей задачей, решаемой при построении сети. Он осуществляется с учетом таких требований, какэкономичность инадежность связи . Задача выбора топологии сети решается сравнительно несложно, если известен набортиповых топологий (примитивов) , которые можно использовать как отдельно, так и в комбинации. Рассмотрим ряд таких типовых топологий, назовем их базовыми, и охарактеризуем их особенности.

Топология «точка точка» является наиболее простым примером базовой топологии и представляет собой сегмент сети, связывающий физически и логически два пункта (рис 2).

Надежность связи в таком сегменте может быть повышена за счет введения резервной связи, обеспечивающей стопроцентное резервирование,

называемое защитой типа 1+1 . При выходе из строя основной связи сеть автоматически переводится на резервную. Несмотря на всю простоту, именно эта базовая топология наиболее широко используется при передаче больших потоков информации по высокоскоростным магистральным каналам, например, по трансокеанским подводным кабелям, обслуживающим цифровой телефонный трафик. Она же используется как составная часть радиально-кольцевой топологии (в качестве радиусов). Топология «точка–точка» с резервированием типа 1+1 может рассматриваться как вырожденный вариант топологии «кольцо» (см. ниже).

Древовидная топология может иметь различные варианты (рис. 3).

Рисунок 3 . Древовидная топология: а – дерево, б – звезда, в – цепь

Особенностью сегмента сети, имеющего древовидную топологию любого из перечисленных вариантов, является то, что связность n пунктов на уровне физической топологии здесь достигается числом ребер R = n – 1, что обеспечивает высокую экономичность такой сети. На логическом уровне, количество связывающих путей передачи информации между каждой парой пунктов в таком сегменте всегда равно h = 1. С точки зрения надежности, это достаточно низкий показатель. Повышение надежности в таких сетях достигается введением резервных связей (например, защиты типа 1+1). Древовидная топология находит применение в локальных сетях, сетях абонентского доступа.

Топология «кольцо» (рис. 4) характеризует сеть, в которой к каждому пункту присоединены две, и только две линии. Кольцевая топология широко используется в локальных сетях, в сегментах меж-узловых соединений территориальных сетей, а также в сетях абонентского доступа, организуемых на базе оптического кабеля.

Число ребер графа, отображающего физическую топологию, равно числу вершин: R = n и характеризует сравнительно невысокие затраты на сеть.

На логическом уровне между каждой парой пунктов могут быть организованы h = 2 независимых связывающих пути (прямой и альтернативный). Это обеспечивает повышение надежности связи в таком сегменте, особенно при использовании резервирования типа 1+1, так называемогодвойного кольца (рис. 5). Двойное кольцо образуется физическими соединениями между парами пунктов, при которых информационный поток направляется в двух противоположных направлениях (восточном и западном), причем одно направление используется как основное, второе – как резервное.

Полносвязная топология (рис. 6) обеспечивает физическое и логическое соединение пунктов по принципу «каждый с каждым». Граф, включающий n вершин, содержитR = n (n – 1)/2 ребер, что определяет высокую стоимость сети. Количество независимых связывающих путей между каждой парой пунктов в таком сегменте сети равноh = n – 1. Полносвязная топология на логическом уровне обладает максимальной надежностью связи, благодаря возможности организации большого числа обходных путей. Такая топология характерна для территориальных сетей при формировании сегментов базовых и опорных (магистральных) сетей. Максимальная надежность связи в сегменте достигается при использовании на обходных направлениях альтернативных сред распространения сигналов (например, волоконно-оптический кабель и радиорелейная линия).

Ячеистая топология (рис. 7). Каждый пункт сегмента имеет непосредственную связь с небольшим числом пунктов, ближайших по расстоянию. При большом числе вершин число реберR » r × n /2, гдеr – число ребер, инцидентных каждой вершине. Ячеистые сегменты обладают высокой надежностью связи при меньшем числе ребер по сравнению с полно-связным сегментом.

Рисунок. 7 Ячеистая топология

Использование полно-связной и ячеистой топологий целесообразно лишь в сегментах с высокой концентрацией трафика, так как их реализация связана со значительными затратами.

Сложные топологии. Реальные сети часто имеют сложные топологии, являющиеся расширениями и/или комбинациями базовых физических топологий. За счет использования сложных топологий удается обеспечивать требования красширяемости имасштабируемости сети.

Под расширяемостью понимают возможность увеличения размера сети, путем сравнительно несложного включения новых структурных элементов. Расширяемость сети, как правило, ограничена, т.к. начиная с некоторого момента добавление очередного структурного элемента приводит к резкому снижению производительности сети.

Хорошо масштабируемые сети характеризуются неограниченными возможностями по наращиванию сети, не оказывающими влияния на ее производительность . Хорошая масштабируемость является одним из важнейших требований, предъявляемых к современным сетям, особенно территориальным.



Просмотров