Квантовые компьютеры - что это такое? Принцип работы и фото квантового компьютера. Квантовый процессор: описание, принцип работы

Последние десятилетия компьютеры развивались очень быстро. Фактически на памяти одного поколения они прошли путь от громоздких ламповых, занимающих огромные помещения до миниатюрных планшетов. Стремительно увеличивалась память и скорость. Но наступил момент, когда появились задачи, неподвластные даже сверхмощным современным компьютерам.

Что такое квантовый компьютер?

Появление новых задач, неподвластных обычным компьютерам, заставило искать новые возможности. И, как альтернатива обычным компьютерам, появился квантовый. Квантовый компьютер - это вычислительная техника, в основу действия, которой положены элементы квантовой механики. Основные положения квантовой механики были сформулированы в начале прошлого века. Ее появление позволило решить многие задачи физики, которые не находили решения в классической физике.

Хотя теория квантов уже насчитывает второе столетие, она по-прежнему остается понятной только узкому кругу специалистов. Но есть и реальные результаты квантовой механики, к которым мы уже привыкли – лазерная техника, томография. А в конце прошлого века была разработана теория квантовых вычислений советским физиком Ю. Маниным. Через пять лет Дэвид Дойч обнародовал идею квантовой машины.

Существует ли квантовый компьютер?

Но воплощение идей оказалось не столь простым. Периодически появляются сообщения о то, что создан очередной квантовый компьютер. Над разработкой такой вычислительной техники работают гиганты в области информационных технологий:

  1. D-Wave – компания из Канады, которая первой начала выпуск действующих квантовых компьютеров. Тем не менее идут споры специалистов, насколько реально являются квантовыми эти компьютеры и какие преимущества они дают.
  2. IBM – создала квантовый компьютер, причем открыла к нему доступ для пользователей интернета для экспериментов с квантовыми алгоритмами. К 2025 году компания планирует создать модель, способную решать уже практические задачи.
  3. Google – анонсировала выпуск в этом году компьютера, способного доказать превосходство квантовых на обычными компьютерами.
  4. В мае 2017 г. Китайские ученые в Шанхае заявили, что создан самый мощный квантовый компьютер в мире, превосходящий аналоги по частоте обработки сигналов в 24 раза.
  5. В июле 2017 г. На Московской конференции по квантовым технологиям было заявлено о том, что был создан 51-кубитный квантовый компьютер.

Чем отличается квантовый компьютер от обычного?

Принципиальное отличие квантового компьютера в подходе к процессу вычисления.

  1. В обычном процессоре все вычисления строятся на основе битов, бывающих в двух состояний 1 либо 0. То есть, вся работа сводится к анализу огромного количества данных на предмет соответствия заданным условиям. В основу квантового компьютера положены кубиты (квантовые биты). Их особенностью является возможность быть в состоянии 1, 0, а также одновременно 1 и 0.
  2. Возможности квантового компьютера значительно возрастают, так как нет необходимости искать нужный ответ среди множества. В этом случае ответ выбирается из уже имеющихся вариантов с определенной долей вероятности соответствия.

Для чего нужен квантовый компьютер?

Принцип квантового компьютера, выстроенный на выборе решения с достаточной долей вероятности и способность находить такое решение в разы быстрее, чем современные компьютеры, определяет и цели его использования. Прежде всего, появление такого вида вычислительной техники беспокоит криптографов. Это связано со способностями квантового компьютера с легкостью вычислять пароли. Так, самый мощный квантовый компьютер, созданный российско-американскими учеными, способен получить ключи к существующим системам шифрования.

Есть и более полезные прикладные задачи для квантовых компьютеров, они связаны с поведением элементарных частиц, генетикой, здравоохранением, финансовыми рынками, защитой сетей от вирусов, искусственным интеллектом и множеством других, решить которые пока не могут обычные компьютеры.

Как устроен квантовый компьютер?

Устройство квантового компьютера базируется на применении кубитов. В качестве физического исполнения кубитов в настоящее время используются:

  • кольца из сверхпроводников с перемычками, с разнонаправленным током;
  • отдельные атомы, под воздействием лазерных лучей;
  • ионы;
  • фотоны;
  • разрабатываются варианты использования нанокристалов полупроводников.

Квантовый компьютер - принцип работы

Если с классическим компьютером в работе есть определенность, то на вопрос, как работает квантовый компьютер, ответить непросто. Описание работы квантового компьютера основывается на двух малопонятных для большинства словосочетаниях:

  • принцип суперпозиции – речь о кубитах, способных находиться одновременно в позиции 1 и 0. Это позволяет вести одновременно несколько вычислений, а не перебирать варианты, что дает большой выигрыш во времени;
  • квантовая запутанность – феномен, отмеченный еще А. Эйнштейном, заключающийся во взаимосвязи двух частиц. Говоря простыми словами, если одна из частиц имеет положительную спиральность, то вторая моментально принимает положительную. Такая взаимосвязь происходит вне зависимости от расстояния.

Кто изобрел квантовый компьютер?

Основа квантовой механики была изложена еще в самом начале прошлого века, как гипотеза. Развитие ее связано с такими гениальными физиками, как Макс Планк, А. Эйнштейн, Поль Дирак. В 1980 г. Ю.Антонов предложил идею о возможности квантовых вычислений. А уже через год Ричард Фейнеман в теории смоделировал первый квантовый компьютер.

Сейчас создание квантовых компьютеров в стадии разработок и даже трудно предположить, на что способен квантовый компьютер. Но абсолютно ясно, освоение этого направления принесет людям много новых открытий во всех областях науки, позволит заглянуть в микро и макромир, узнать больше о природе разума, генетики.

Наука не стоит на месте и, казалось бы, то, что считалось вчера мистикой сегодня неоспоримая реальность. Так и сейчас, мифы о параллельных мирах могут стать обычным фактом в дальнейшем. Считается, что к этому утверждению помогут прийти исследования в области создания квантового компьютера. Лидерство занимает Япония , более 70% всех исследований приходится на эту страну. Сущность этого открытия больше понятна тем, кто так или иначе связан с физикой. Но большинство из нас оканчивало среднюю школу, где в учебнике 11 класса раскрываются некоторые вопросы квантовой физики.

С чего все начиналось

Напомним, что начало положили два основных открытия, за которые их авторы удостоились Нобелевской премии. В 1918 году Макс Планк открыл квант, а Альберт Эйнштейн в 1921 году фотон. Идея создания квантового компьютера зародилась в 1980 году , когда было доказано об истинности квантовой теории. А идеи начали воплощаться в практику только в 1998 году . Массовые, и при этом достаточно результативные работы, проводятся только в последние 10 лет .

Основные принципы понятны, но с каждым шагом вперед возникает все больше проблем, разрешение которых занимает достаточно много времени, хотя этой проблемой занимается очень много лабораторий во всем мире. Требования к такому компьютеру очень большие, так как точность измерений должна быть очень высокой и нужно свести к минимуму количество внешних воздействий, каждое из которых будет искажать работу квантовой системы.

ЗАЧЕМ НУЖЕН КВАНТОВЫЙ КОМПЬЮТЕР?

На чем основана работа квантового компьютера

Все, в большей или меньшей степени, имеют понятие, как работает обычный компьютер. Смысл его заключается в использование двоичного кодирования, где наличие определенного значения напряжения принимается за 1, а отсутствие 0. , выраженное 0 или 1, считается битом. Работа же квантового компьютера связана с понятием спина. Для кого физика ограничивается школьными знаниями, могут утверждать о существовании трех элементарных частицах и о наличии у них простых характеристик, как масса и заряд.

Но ученые-физики постоянно пополняют класс элементарных частиц и их характеристик, одним из которых является спин. И определенное направление спина частицы принимается за 1, а обратное ему за 0. Это схоже с устройством транзистора. Основной элемент будет уже называться квантовым битом или кубитом. В качестве него могут выступать фотоны, атомы, ионы, ядра атомов.

Главным условием здесь является наличие двух квантовых состояний. Изменение состояния определенного бита в обычном компьютере не ведет к изменению других, а вот в квантовом компьютере изменение одной введет к изменению состояния других частиц. Этим изменением можно управлять, и представьте, что таких частиц сотни.

Представьте только, во сколько раз возрастет производительность такой машины. Но создание целостного новейшего компьютера – это только гипотеза, предстоит большая работа физиков в той области квантовой механики, которая называется многочастичной. Первый мини квантовый компьютер состоял из 16 кубитов . В последнее время выпущены компьютеры с использованием 512 кубитов, но и они уже используются для повышения быстроты выполнения сложнейших операций вычисления. Quipper – язык разработанный специально для таких машин.

Последовательность выполняемых операций

В создании компьютера нового поколения выделяют четыре направления, которые отличаются тем, что выступает в роли логических кубитов:

  1. направление спинов частиц, составляющих основу атома;
  2. наличие или отсутствие куперовской пары в установленном месте пространства;
  3. в каком состоянии находится внешний электрон;
  4. различные состояния фотона.

А теперь рассмотрим схему, по которой работает компьютер. Для начала берется какой-нибудь набор кубитов и записываются их начальные параметры. Выполняются преобразования с использованием логических операций, записывается полученное значение, являющееся результатом выдаваемым компьютером. В роли проводов выступают кубиты, а преобразования составляют логические блоки. Такой процессор был предложен Д. Дойчем , который в 1995 году смог создать цепочку способную выполнять любые вычисления на квантовом уровне. Но такая система дает небольшие погрешности, которые можно немного уменьшить, увеличив количество операций задействованных в алгоритме.

Как Работает Квантовый Компьютер?

Чего достигли

Пока разработаны только два типа квантовых компьютеров, но наука не стоит на месте. Работа обеих машин строится на квантовых явлениях:

  1. связано со сверхпроводимостью. При его нарушениях наблюдается квантование ;
  2. основано на таком свойстве как когерентность. Быстрота вычисления таких компьютеров увеличивается вдвое по сравнению с количеством кубитов.

Второй тип из рассмотренных считается приоритетным в области создания квантовых компьютеров.

Достижения различных стран.

Если вкратце, то достижения последних 10 лет значительные. Можно отметить созданный в Америке двухкубитный компьютер с программным обеспечением. Им же оказалось под силу выпуск двухкубитного компьютера с кристаллом алмаза. В роли кубитов применялось направление спина частиц азота, его составляющих: ядра и электрона. Чтобы обеспечить весомую защиту была разработана очень сложная система позволяющая давать результат с 95% точностью.

ICQT 2017. Джон Мартинис, Google: Квантовый компьютер: жизнь после закона Мура

Для чего все это нужно

Уже говорилось о создании квантовых компьютеров. Эти компьютеры не являются результатом того к чему стремились, но своего покупателя они нашли. Американская компания Lockheed Martin , специализирующаяся в области обороны заплатила 10 млн. долларов. Их приобретение способно находить ошибки сложнейшей программе, установленной на истребителе F-35 . Google с помощью своего приобретения хочет запустить программы для машинного обучения.

Будущее

В разработке квантового компьютера очень заинтересованы крупные компании и государство. Оно приведет к новым открытиям в области разработки криптографического алгоритма. Будет это на руку государству или хакерам решит время. Но работа по созданию и распознаванию криптоключей будет выполняться моментально. Решатся много проблем, связанных с банковской картой.

Сообщения будут передаваться с огромной скоростью и не будет проблем связаться с любой точкой на земном шаре, а может даже за ее пределами.

Такой компьютер поможет сделать , особенно в расшифровке генетического кода. Это приведет к разрешению многих медицинских проблем.

И, конечно же, приоткроет дверь в страну мистических тайн, параллельных миров.

Нас ждут сильнейшие потрясения. Все к чему мы привыкли, является только частью того мира, которому уже дали название Квантовой реальности. Выйти за рамки материального мира помогут , которые и составляют принцип работы квантового компьютера.

Квантовые компьютеры обещают настоящую революцию, причем не только в вычислениях, но и в реальной жизни. Медиа пестрят заголовками про то, как квантовые компьютеры уничтожат современную криптографию, а мощность искусственного интеллекта, благодаря им возрастет на порядки.

За последние 10 лет квантовые компьютеры прошли путь от чистой теории до первых работающих образцов. Правда, до обещанной революции предстоит пройти еще немалый путь, да и ее влияние в итоге может оказаться не таким всеобъемлющим, как представляется сейчас.

Как работает квантовый компьютер

Квантовый компьютер – устройство, которое использует явления квантовой суперпозиции и квантовой запутанности. Основным элементом в таких вычислениях является кубит, или квантовый бит. За всеми этими словам кроется довольно сложная математика и физика, но если их максимально упростить, то получится примерно следующее.

В обычных компьютерах мы имеем дело с битами. Бит - единица измерения информации в двоичной системе. Он может принимать значение 0 и 1, что очень удобно не только для математических операций, но и для логических, так как нулю можно сопоставить значение «ложно», а единице – «истинно».


Современные процессоры построены на базе транзисторов, полупроводниковых элементов, которые могут пропускать, либо не пропускать электрический ток. Иначе говоря, выдавать два значения 0 и 1. Точно также во флеш-памяти транзистор с плавающим затвором может хранить заряд. Если он есть, мы получаем единицу, если его нет – ноль. Аналогичным образом работает и магнитная цифровая запись, только носителем информации там является магнитная частичка, либо имеющая, либо не имеющая заряд.

При вычислениях мы считываем из памяти значение бита (0 или 1) и затем пропускаем ток через транзистор и в зависимости о того, пропускает он его или нет, получаем на выходе новый бит, возможно, имеющий другое значение.

Что такое кубиты для квантовых компьютеров? В квантовом компьютере основным элементом является кубит – квантовый бит. В отличие от обычного бита он находится в состоянии квантовой суперпозиции, то есть имеет значение и 0, и 1, и любые их сочетания в любой момент времени. Если в системе находится несколько кубитов, то изменение одного также влечет за собой изменение всех остальных кубитов.


Это позволяет одновременно просчитывать все возможные варианты. Обычный процессор с его бинарными вычислениями, фактически просчитывает варианты последовательно. Сначала один сценарий, потом другой, потом третий и т.д. Чтобы ускорить, начали применять многопоточность, запуская вычисления параллельно, предвыборку, чтобы предугадывать возможные варианты ветвления и просчитывать их заранее. В квантовом компьютере это все делается параллельно.

Отличается и принцип вычислений. В каком-то смысле квантовый компьютер уже содержит все возможные варианты решения задачи, нашей задачей только является считать состояние кубитов и... выбрать из них правильный вариант. И вот тут начинаются сложности. В этом и заключается принцип работы квантового компьютера.

Создание квантового компьютера

Какой будет физическая природа квантового компьютера? Добиться квантового состояния можно только у частиц. Кубит не построишь из нескольких атомов, как транзистор. Пока эта проблема до конца не решена. Есть несколько вариантов. Используются зарядовые состояния атомов, например, присутствие или отсутствие электрона в обычной точке, сверхпроводящие элементы, фотоны и т.д.


Столь «тонкие материи» накладывают ограничения и на измерения состояния кубитов. Энергии крайне малые, необходимы усилители, чтобы прочитать данные. Но усилители могут оказывать воздействия на квантовую систему и менять ее состояния, впрочем, не только они, но даже сам факт наблюдения может иметь значение.

Квантовые вычисления предполагают последовательность операций, которые совершаются с одним или несколькими кубитами. Те в свою очередь ведут за собой изменения всей системы. Задача выбрать из ее состояний правильное, дающее результат вычислений. При этом может быть сколь угодно много состояний, максимальное приближенных к таковому. Соответственно, точность таких вычислений почти всего будет отличаться от единицы.

Таким образом, для полноценного квантового компьютера нужны значительные достижения в физике. Кроме того, программирование для квантового компьютера будет отличаться от существующего сейчас. Наконец, квантовые компьютеры не смогут решить задачи, которые не под силу обычным, но в состоянии ускорить решения тех, с которыми они справляются. Правда, опять же не все.

Счет на кубиты, кубитный квантовый компьютер

Постепенно проблемы на пути к квантовому компьютеру снимаются. Первые кубиты были построены еще в начале века. Процесс ускорился в начале десятилетия. Сегодня разработчики уже в состоянии произвести процессоры с десятками кубитов.


Последним по времени прорывом стало создание процессора Bristlecone в недрах Google. В марте 2018 года компания заявила, что смогла построить 72-кубитный процессор. На каких физических принципах построен Bristlecone Google не сообщает. Однако считается, что для достижения «квантового превосходства», когда квантовый компьютер начинает превосходить обычный, достаточно 49 кубитов. Google удалось выполнить это условие, но уровень ошибок в 0,6% пока выше требуемого в 0,5%.

Осенью 2017 года IBM объявила о создании прототипа 50-кубитового квантового процессора. Он проходит тестирование. Но в 2017 году IBM открыла свой 20-кубитовый процессор для облачных вычислений. В марте 2018 года была запущена меньшая версия IBM Q. Ставить эксперименты на таком компьютере могут все желающие. По их результатам уже вышло 35 научных работ.


Еще в начале 10-летия на рынке появилась шведская компания D-Wave, которая позиционировала свои компьютеры как квантовые. Она породила множество споров, так как объявляла о создании 1000-кубитных машин, в то время как признанные лидеры «ковырялись» всего лишь с парой кубитов. Компьютеры шведских разработчиков продавались по цене в $10-15 миллионов, так что проверить их было не так просто.


Компьютеры D-Wave не являются квантовыми в прямом смысле этого слова, но используют некоторые квантовые эффекты, которые можно применять для решения некоторых задач оптимизации. Иначе говоря, не все алгоритмы, которые могут быть выполнены на квантовом компьютере, получают на D-Wave квантовое ускорение. Google приобрела одну из систем шведов. В результате ее исследователи признали компьютеры «ограниченно квантовыми». При этом выяснилось, что кубиты сгруппированы кластерами по восемь, то есть их реальное число заметно меньше, чем декларируемое.

Квантовый компьютер в России

Традиционно сильная школа физики позволяет внести существенный вклад в решение физических проблем для создания квантового компьютера. В январе 2018 года россияне создали усилитель сигнала для квантового компьютера. Учитывая, что своей работой усилитель сам по себе способен влиять на состояние кубитов, уровень генерируемого им шума должен мало отличаться от «вакуумного». Это и удалось российским ученым из лаборатории «Сверхпроводящие метаматериалы» НИТУ «МИСиС» и двух институтов РАН. Для создания усилителя использовались сверхпроводники.


В России также создан квантовый центр. Это негосударственная исследовательская организация, занимающаяся исследованиями в области квантовой физики. В том числе она занимается проблемой создания кубитов. За центром стоит бизнесмен Сергей Белоусов и профессор Гарвардского университета Михаил Лукин. Под его руководством в Гарварде уже был создан 51-кубитовый процессор, который некоторое время до анонса Bristlecon был самым мощнейшим квантовым компьютером устройством в мире.

Развитие квантовых вычислений стало частью госпрограммы «Цифровая экономика». В 2018-20 года на работы в этой сфере будет выделяться господдержка. Планом мероприятий предусмотрено создание квантового симулятора на восьми сверхпроводниковых кубитах. После этого будет решаться вопрос дальнейшего масштабирования данной технологии.

Кроме того, до 2020 года в России собираются опробовать еще одну квантовую технологию: построение кубитов на нейтральных атомах и заряженных ионах в ловушках.

Одной из целей программы является создание устройств квантовой криптографики и квантовых коммуникаций. Будут созданы центры распределения квантовых ключей, которые будут их раздавать потребителям – банкам, дата-центрам, отраслевым предприятиям. Считается, что полноценный квантовый компьютер может за считанные минуты сломать любой современный алгоритм шифрования.

В итоге

Итак, квантовые компьютеры пока все еще остаются экспериментальными. Маловероятно, что полноценный квантовый компьютер, обеспечивающий действительно высокую вычислительную мощность, появится раньше следующего десятилетия. Производство кубитов и построение из них стабильных системы все еще далеко от совершенства.

Судя по тому, что на физическом уровне квантовые компьютеры имеют несколько решений, которые отличаются технологиями и, вероятно, стоимостью, они не будут унифицированы еще лет 10. Процесс стандартизации может растянуться надолго.

Кроме того, уже сейчас понятно, что квантовые компьютеры и в течение следующего десятилетия, скорее всего, будут «штучными» и очень дорогими устройствами. Вряд ли они окажутся в кармане у простого пользователя, но списке суперкомпьютеров можно ожидать их появления.

Вероятно, что квантовые компьютеры будут предлагаться в «облачной» модели, когда их ресурсы смогут задействовать заинтересованные исследователи и организации.



Просмотров