AN228 - рассмотрение физического уровня CAN. Введение в протокол CAN

Полевая шина CAN (Controller Area Network) характеризуется высокими скоростью передачи данных и помехоустойчивостью, а также способностью обнаруживать любые возникающие ошибки. Не удивительно, что благодаря этому CAN сегодня широко используется в таких областях, как автомобильный и железнодорожный транспорт, промышленная автоматика, авиация, системы доступа и контроля. По данным ассоциации CiA (CAN in Automation, www.can-cia.de), в настоящее время в эксплуатации находится около 300 млн CAN-узлов по всему миру. В Германии CAN-шина занимает первое место по популярности среди остальных полевых шин. В данной статье приводится общее описание и технические характеристики CAN-шины и описывается логика ее работы. Кроме того, приводится описание встроенных модулей CAN, автономных контроллеров на примере микроконтроллеров (МК) Infineon, трансиверов и дросселей. Рассматриваются средства разработки устройств с CAN-шиной.

Характеристики протокола CAN Преимущества CAN

Общая тенденция в области автоматизации состоит в замене традиционной централизованной системы управления на распределенное управление путем размещения интеллектуальных датчиков и исполнительных механизмов рядом с управляемым процессом. Это вызвано ростом числа проводов связи, увеличением количества соединений, сложностью диагностики ошибок и проблемами с надежностью. Связь между узлами такой системы осуществляется с помощью полевой шины. CAN - это система связи для многоконтроллерных систем. Рассмотрим более подробно преимущества CAN и причины, по которым CAN приобретает все большее распространение.

Испытанный стандарт. Протокол CAN активно используется уже более 20 лет, что очень важно для таких консервативных областей как железнодорожный транспорт или судостроение. CAN был разработан в 1980 г. фирмой Robert Bosch для автомобильной промышленности. CAN-интерфейс регламентирован международными стандартами ISO 11898 для высокоскоростных и ISO 11519-1 для низкоскоростных приложений. Низкая стоимость определяется хорошим соотношением цена/производительность, также широкой доступностью CAN-контроллеров на рынке. Надежность определяется линейной структурой шины и равноправностью ее узлов, так называемой мультимастерностью (Multi Master Bus), при которой каждый узел CAN может получить доступ к шине. Любое сообщение может быть послано одному или нескольким узлам. Все узлы одновременно считывают с шины одну и ту же информацию, и каждый из них решает, принять данное сообщение или игнорировать его. Одновременный прием очень важен для синхронизации в системах управления. Отказавшие узлы отключаются от обмена по шине.

Высокая помехоустойчивость достигается благодаря подавлению синфазных помех дифференциальным приемопередатчиком, работе встроенных механизмов обнаружения ошибок (одна необнаруженная ошибка за 1000 лет при ежедневной 8-часовой работе сети на скорости 500 Кбит/с), повтору ошибочных сообщений, отключению неисправных узлов от обмена по шине и устойчивости к электромагнитным помехам.

Гибкость достигается за счет простого подключения к шине и отключения от шины CAN-узлов, причем общее число узлов не лимитировано протоколом нижнего уровня. Адресная информация содержится в сообщении и совмещена с его приоритетом, по которому осуществляется арбитраж. В процессе работы возможно изменение приоритета передаваемого сообщения. Следует также отметить возможность программирования частоты и фазы передаваемого сигнала и арбитраж, не разрушающий структуру сообщений при конфликтах. На физическом уровне есть возможность выбора разнотипных линий передачи данных: от дешевой витой пары до оптоволоконной линии связи.

Работа в реальном времени становится возможной благодаря механизмам сетевого взаимодействия (мультимастерность, широковещание, побитовый арбитраж) в сочетании с высокой скоростью передачи данных (до 1 Мбит/с), быстрой реакцией на запрос передачи и изменяемой длиной сообщения от 0 до 8 байт.

Приложения CAN

CAN является идеальным решением для любого приложения, где микроконтроллеры обмениваются сообщениями друг с другом и с удаленными периферийными устройствами. Изначально CAN использовался в автомобилях для обеспечения критичного по времени управления и обмена информацией между двигателем и коробкой передач при гарантированном времени ожидания сообщения и допуске каждого из участников сети к работе с текущими данными. Наряду с достаточно дорогими высокоскоростными решениями существуют и экономичные решения для подключения к сети инерционных устройств, которые работают в шкале времени сотен микросекунд (система управления дверьми, подъемник окна, управление зеркалом). При этом мощные жгуты электрических проводов заменяются двухпроводной CAN-сетью, узлами которой являются, в том числе, тормозные огни и указатели поворота.

Широкое применение CAN нашел в промышленной автоматике, где имеется большое число устройств управления, датчиков, механизмов, электроприводов и других объектов, которые связаны единым технологическим циклом (системы отопления и кондиционирования, насосы, конвейеры, лифты, эскалаторы, транспортеры и т. д.). Важной особенностью таких систем является возможность диагностики и управления объектами, расположенными на большой территории, по адаптивным алгоритмам. В результате достигается существенное уменьшение потребляемой мощности, шума, износа оборудования. Подобная картина наблюдается и в железнодорожных бортовых системах, где решающую роль играет обмен данными между подсистемами при наборе скорости, торможении, управлении дверьми и диагностике.

Физический уровень

Физический уровень CAN-шины представляет собой соединение «монтажное И» между всеми устройствами, подключенными к ней. Дифференциальные сигнальные линии называются CAN_H и CAN_L и в статическом состоянии находятся под потенциалом 2,5 В. Лог. 1 (рецессивный бит) обозначает состояние шины, при котором уровень на линии CAN_H выше, чем уровень CAN_L. При лог. 0 (доминантный бит) уровень на линии CAN_H ниже, чем уровень CAN_L. Принято следующее соглашение о состоянии шины: пассивное состояние шины соответствует уровню лог. 1, а активное - уровню лог. 0. Когда сообщения не передаются по шине, она находится в пассивном состоянии. Передача сообщения всегда начинается с доминантного бита. Логика работы шины соответствует «проводному И»: доминантный бит «0» подавляет рецессивный бит «1» (рис. 1).

Рис. 1. Логика работы CAN шины

При физической реализации конкретного проекта с CAN необходимо определить свойства шины и ее узлов: где располагаются обрабатывающие устройства, какими свойствами они обладают, какие датчики и исполнительные механизмы присутствуют в системе, являются они интеллектуальными или нет, что можно сказать об их физическом расположении. В зависимости от условий эксплуатации могут использоваться однопроводная линия (в пределах печатной платы), двухпроводная линия, витая пара или волоконно-оптическая линия. При дифференциальном методе формирования сигналов двухпроводная линия позволяет значительно повысить помехоустойчивость. При использовании дифференциальных напряжений CAN-сеть продолжает функционировать в чрезвычайно шумной среде или при обрыве одной из сигнальных линий. Даже при простой витой паре дифференциальные входы CAN эффективно нейтрализуют шум.

Максимальная скорость передачи данных составляет 1 Мбит/с при длине шины 40 м и около 40 Кбит/с при длине шины 1000 м.

Арбитраж узлов CAN-шины

CAN имеет много уникальных свойств, отличающих его от других шин. В протоколе CAN осуществляется посылка сообщений по общей CAN-шине, при этом отсутствуют адреса отправителя и получателя сообщения. Каждый узел постоянно «просматривает» шину и осуществляет локальную фильтрацию при приеме, используя битовые маски, и решает, какие сообщения извлекать из шины.

В результате узел принимает и обрабатывает только те сообщения, которые предназначены именно для него.

Каждое сообщение имеет свой приоритет, значение которого содержится в идентификаторе сообщения. Кроме того, идентификаторы используются для обозначения типа сообщения. Сообщению с младшим номером идентификатора соответствует высший приоритет; наивысшим приоритетом обладает сообщение с идентификатором, состоящим полностью из нулей. Передача сообщения начинается с отправки на шину идентификатора. Если доступ к шине требуют несколько сообщений, то сначала будет передано сообщение с наиболее высоким приоритетом, то есть с меньшим значением идентификатора, независимо от других сообщений и текущего состояния шины. Каждый узел перед передачей сообщения проверяет, работает ли узел с более высоким приоритетом. Если да, то он возвращается в состояние приемника и пытается передать сообщение в другое время. Это свойство имеет особое значение при использовании в системах управления реального времени, поскольку значение приоритета жестко определяет время ожидания.

Если передача узла А приостанавливается узлом B, посылающим сообщение с более высоким приоритетом, то, как только шина освободится, будет сделана другая попытка передачи сообщения от узла A. Этот принцип получил название CSMA/CA: Carrier Sense Multiple Access/Collision Avoidance (общий доступ с опросом/предотвращение конфликтов). Такой режим в отличие от Ethernet не позволяет конфликтующим узлам в шине выяснять отношения, а сразу выявляет победителя и сокращает время обмена.

Итак, благодаря арбитражу шины сообщение с высшим приоритетом передается первым, обеспечивая функционирование системы в реальном масштабе времени и быструю передачу информации. Распределение приоритетов между различными типами сообщений задается разработчиком при проектировании сети.

Формат сообщений

Если не учитывать процедуру повтора сообщения, принятого с ошибкой, существует два вида связи между узлами: один узел передает информацию, а другой получает, или узел A запрашивает узел B о данных и получает ответ.

Рис. 2. Кадр данных (Data Frame)

Для передачи данных служит кадр данных - Data Frame (рис. 2), который содержит:

  • идентификатор, указывающий на тип сообщения («скорость_двигателя», «температура_масла») и на приоритет доступа к шине. Поле идентификатора содержит различное количество бит в зависимости от разновидности протокола: в стандартном формате CAN V2.0A предусмотрен 11-разрядный идентификатор, а в расширенном CAN V2.0B - 29-разрядный;
  • поле данных, содержащее соответствую-щее сообщение («скорость_двигателя»= 6000 об/мин, «температура_масла»=110 °C) длиной до восьми байт;
  • два байта контрольной суммы - Cyclic Redundancy Check (CRC) для выявления и коррекции ошибок передачи.

Для запроса информации узел CAN использует кадр запроса данных Remote Frame (рис. 3), который содержит:

  • идентификатор, определяющий тип запрашиваемой информации («скорость_ двигателя», «температура_масла») и приоритет сообщения;
  • два байта контрольной суммы CRC .

Рис. 3. Кадр запроса данных Remote Frame

В этом случае за идентификатором не следуют данные и код длины данных не имеет прямого отношения к количеству байт данных. Узел, которому предложено передать информацию (датчик температуры масла), передает кадр данных, содержащий требуемую информацию. Таким образом, если узел А направляет узлу В кадр запроса с идентификатором «температура_масла», то узел В опрашивает датчик температуры и направляет узлу А кадр данных, содержащий идентификатор «температура_масла» и требуемую информацию.

Дополнительная информация, содержащаяся в кадре, позволяет определить формат и синхронизацию протокола передачи сообщения и тип посылки:

  • какое сообщение послано - запрос о данных или собственно данные определяют бит удаленного запроса передачи (RTR для 11-разрядного идентификатора и SRR для 29-разрядного);
  • код длины данных, сообщающий, сколько байтов данных содержит сообщение; все узлы принимают кадр данных, но те из них, которым эта информация не нужна, ее не сохраняют;
  • для обеспечения синхронизации и контроля кадр содержит поля начала кадра Start of Frame, конца кадра End of Frame и подтверждения Acknowledgement Field;
  • вход в режим синхронизации на шине осуществляется первым битом поля Start of Frame, далее синхронизация поддерживается фронтом при смене уровня посылаемых битов;
  • используется механизм битстаффинга - вставка дополнительного бита при следующих подряд пяти нулях или единицах.

Обнаружение ошибок

Сигнализация об ошибках происходит путем передачи кадра ошибки Error Frame. Он инициируется любым узлом, обнаружившим ошибку. CAN-контроллеры используют метод статистической обработки ошибок. Каждый узел содержит счетчики ошибок при передаче и приеме Transmit Error Counter и Receive Error Counter. Если передатчик или приемник обнаруживают ошибку, значение соответствующего счетчика увеличивается. Когда значение счетчика превышает некоторый предел, текущая передача прерывается. Узел выдает сигнал об ошибке в виде Error Frame, где выставляет активный доминантный флаг ошибки длиной 6 бит. После этого узел, передача которого была прервана, повторяет сообщение. Ненадежным или частично поврежденным узлам разрешено посылать лишь пассивный рецессивный флаг ошибки.

В CAN существует несколько разновидностей ошибок. Из них три типа на уровне сообщений:

  • CRC Error - ошибка контрольной суммы (при несовпадении принятой в поле CRC и вычисленной контрольных сумм).
  • Form Error - ошибка формата кадра при несоответствии принятого сообщения формату CAN.
  • Acknowledgement Error - ошибка подтверждения приема сообщения, если ни один из узлов не подтвердил правильного получения сообщения.

Кроме того, существует два типа ошибок на битовом уровне:

  • Bit Error - обнаружение активным узлом расхождения между посланным в шину уровнем и фактическим значением за счет реализации узлом механизма самоконтроля.
  • Stuff Error - наличие в поле сообщения шести следующих подряд бит 0 или 1 (ошибка битстаффинга).

Благодаря этим механизмам обнаружения и коррекции ошибок вероятность пропуска ошибки крайне мала. Например, при скорости 500 Кбит/с, загруженности шины 25 % и использовании в течение 2000 часов в год возникает лишь одна необнаруженная ошибка за 1000 лет. Кроме того, в шине невозможна ситуация блокировки неисправным узлом работы всей сети. Такие узлы обнаруживаются и отключаются от обмена по шине.

Разновидности CAN

В настоящее время доступны различные устройства с CAN-интерфейсом, которые помимо передачи данных из одной точки в другую позволяют реализовать синхронизацию процессов и обслуживание по приоритетам. Более ранние реализации CAN-контроллеров используют кадры с 11-разрядным идентификатором и возможностью адресации до 2048 сообщений и соответствуют спецификации CAN V. 2.0A. Такие контроллеры носят название Basic CAN и характеризуются сильной загруженностью центрального процессора (ЦПУ), так как каждое входящее сообщение запоминается в памяти и ЦПУ решает, нужны ему данные сообщения или нет (рис. 4). Контроллеры Basic CAN содержат один передающий буфер и один или два приемных буфера сообщений. Чтобы послать или получить сообщение, требуется задействовать ЦПУ через прерывания «сообщение_послано» и «сообщение_получено». В результате проверки каждого входящего сообщения загрузка ЦПУ очень велика, что ограничивает реальную скорость обмена по сети. По этой причине такие контроллеры используются в сетях CAN с низкой скоростью обмена и/или малым количеством сообщений.

Рис. 4. Структура контроллера Basic CAN

Большинство выпускаемых сегодня CAN-контроллеров используют расширенные кадры сообщений с идентификатором длиной 29 разрядов, что позволяет адресовать до 536 млн сообщений. Такие контроллеры соответствуют спецификации CAN V. 2.0B (active) и называются контроллеры Full-CAN. В них предусмотрен буфер для нескольких сообщений, причем каждое сообщение имеет свою маску, и фильтрация осуществляется по соответствию идентификатора маске.

В случае Full-CAN ЦПУ максимально разгружено, поскольку не обрабатывает ненужные сообщения (рис. 5). При приеме сообщения с идентификатором, соответствующим маске, оно запоминается в специальной зоне двухпортового ОЗУ, и работа ЦПУ прерывается. Full-CAN имеет также специальный тип сообщения, которое означает: «у кого бы ни находилась эта информация, пожалуйста, пошлите ее сейчас же». Контроллер Full-CAN автоматически прослушивает все сообщения и посылает запрошенную информацию.

Рис. 5. Структура контроллера Full-CAN

До недавнего времени в промышленности был широко распространен Basic CAN с 11-разрядным идентификатором. Этот протокол допускает простую связь между микроконтроллерами и периферийными устройствами при скорости обмена вплоть до 250 Кбит/с. Однако при стремительном удешевлении CAN-контроллеров использование Full-CAN стало оправданным и для связи с медленными устройствами. Если в промышленных приложениях требуется высокоскоростной (до 1 Мбит/с) обмен данными, то непременно следует использовать Full-CAN.

Элементная база для CAN

На самом нижнем уровне CAN-шины находится собственно двухпроводная линия с терминальными резисторами. Далее для повышения помехоустойчивости расположен дифференциальный приемопередатчик - трансивер. На следующем уровне - контроллер со встроенным модулем или автономный модуль CAN, подключаемый к главному контроллеру через параллельный или последовательный порт. Связь с узлами CAN, осуществляющими обмен информацией, ведется через линии портов микроконтроллеров. CAN-контроллеры осуществляют процедуру приема-передачи данных и соединяются с шиной двумя сигналами: RxD для приема с шины и TxD для передачи на шину. Реализация CAN-шины с помощью микроконтроллеров Infineon представлена на рис. 6.

Рис. 6. Реализация CAN-шины с помощью микроконтроллеров Infineon

Микроконтроллеры с CAN-модулем

Одним из факторов, обеспечивших популярность CAN, является богатый выбор и доступная цена элементной базы различных производителей - Infineon, Motorola, Microchip, Philips и др.

В данной статье упор сделан на элементную базу Infineon. Такое решение основано, в частности, на результатах опроса, проводимого на сайте Keil Software (www.keil.com) для микроконтроллерных платформ 8051/251/С166. На вопрос, какой микроконтроллер со встроенным CAN вы используете, по выборке из 2111 респондентов ответы распределились согласно табл. 1.

Таблица 1. Результаты опроса: "Какой микроконтроллер со встроенным CAN вы используете?"

Фирма Infineon выпускает продукты во всех классах цена/производительность. В настоящее время доступны как 8-разрядные контроллеры C505CA, C515C, так и 16-разрядные: C161CS, C164CI, C167CR, 167CS (табл. 2). Самым дешевым кристаллом с CAN является C505CA. МК C161CS и C167СS содержат два CAN-модуля. Самый мощный и дорогой микроконтроллер TriCore TC1775 также содержит реконфигурируемый модуль TwinCAN с двумя модулями CAN на 32 сообщения. TriCore - это первый 32-разрядный микроконтроллер Infineon с архитектурой DSP, оптимизированный для встроенных приложений реального времени, который заменяет собой МК, процессор DSP и заказную микросхему ASIC. Встроенный модуль соответствует спецификации CAN V2.0 B active и содержит память на 15 сообщений для приема/передачи с собственными идентификаторами, битами состояния и управления. Кроме того, он содержит регистры маски для фильтрации входящих сообщений и оснащен двумя приемными буферами. Встроенный модуль CAN позволяет строить системы с разнообразными задачами, используя минимальное количество микросхем внешнего интерфейса. Подключение любого из микроконтроллеров Infineon к CAN-шине осуществляется по одним и тем же принципам. Пример соединения C167CR с CAN-шиной представлен на рис. 7.

Таблица 2. CAN-микроконтроллеры фирмы Infineon

Тип Версия CAN Кол-во сообщ. CAN-модуль Корпус Примечание
С505СА V2.0 B 15 1 x CAN MQFP-44 8 bit MC
С151С V2.0 B 15 1 x CAN MQFP-80 8 bit MC
С161СS V2.0 B 30 2 x CAN TQFP-128 16 bit MC
C164CI V2.0 B 15 1 x CAN MQFP-80 16 bit MC
C167CR V2.0 B 15 1 x CAN MQFP-144 16 bit MC
C167CS V2.0 B 30 2 x CAN MQFP-144 16 bit MC
TC1775 V2.0 B 32 TwinCAN BGA-329 32 bit MC
SAE81C90 V2.0 A 16 1 x CAN PLCC-44 Stand Alone
SAE81C91 V2.0 A 16 1 x CAN PLCC-28 Stand Alone
SAK82C900 V2.0 B 32 TwinCAN P-DSO-28 Stand Alone

Кроме того, следует сказать также несколько слов о МК фирмы Philips - одного из родоначальников элементной базы CAN. На смену устаревшему автономному CAN-контроллеру Philips PCA82C200 пришел полностью совместимый с ним контроллер SJA1000, работающий со стандартом CAN V2.0 B. Необходимо отметить, что PCA82C200 поддерживает только стандарт CAN V2.0 A и способен передавать и принимать только стандартный CAN-протокол, то есть при приеме расширенного кадра он генерирует ошибку и может разрушить всю сеть. В SJA1000 за счет поддержки стандарта PeliCAN (чтение и запись счетчиков ошибок, программирование их количественного порога) значительно расширены возможности по управлению CAN.

Рис. 7. Пример соединения МК С167CR c CAN-шиной

В результате объединения SJA1000 с ядром XA появился 16-разрядный МК XAC3 с интегрированным CAN-интерфейсом. Совместимый с 8051 режим микроконтроллера Philips XA позволяет осуществить простой переход от 8-разрядной архитектуры 8051 к 16-разрядной, что особенно важно для сохранения преемственности программного обеспечения. Среди 8-разрядных МК следует отметить также Philips P80C592, P8xC591 и 8xCE598.

Motorola тоже предлагает широкий спектр микроконтроллеров с интегрированным CAN-модулем: от самых дешевых 8-разрядных МК 68HC05X до 32-разрядного Power PC MPC555 с дуальным CAN V2.0 B.

Продолжение следует

Сетевой интерфейс CAN (Controller Area Network) был разработан в 1987г. (версия 1.0) фирмами BOSCH и INTEL для создания бортовых мультипроцессорных систем реального времени. Последняя спецификация интерфейса 2.0, разработанная фирмой BOSCH в 1992г., является дополнением предыдущей версии. В международной организации по стандартизации зарегистрирован ISO 11898 (для высокоскоростных приложений) и ISO 11519-2 (для низкоскоростных приложений).

Принцип работы

CAN является высокоинтегрированным сетевым интерфейсом передачи данных со скоростью до 1 Мбит/сек. Устройства в CAN-системе соединяются по шине, состоящей из 3-х проводов (2 сигнальных и один общий) (см. рис.).

Сообщения данных, передаваемые из любого узла по CAN-шине, могут содержать от 1 до 8 байт. Каждое сообщение помечено идентификатором, который в сети является уникальным (например: "Нагрев до 240", "Отказ нагрева","Бункер загружен", и т.д.). При передаче другие узлы сети получают сообщение и каждый из них проверяет идентификатор. Если сообщение имеет отношение к данному узлу, то оно обрабатывается, в противном случае - игнорируется. CAN-контроллер каждого из устройств может обрабатывать одновременно несколько идентификаторов (например, контроллеры SIEMENS и INTEL могут обрабатывать до 15). Таким образом, в каждом из устройств можно легко организовать несколько "виртуальных" каналов обмена информацией с различными устройствами, включая каналы одновременного получения сообщений.

Рис. 1. Соединение устройств по CAN-шине

Идентификаторы

Идентификатор определяет тип и приоритет сообщения. Более низкому числовому значению идентификатора соответствует более высокое значение приоритета. Сообщение, имеющее более высокий приоритет, передается раньше сообщения, имеющего более низкий приоритет. После сообщения с высоким приоритетом передается сообщение с более низким приоритетом, если во время передачи не появится сообщение с более высоким приоритетом, затем передается сообщение с еще более низким приоритетом и т. д.

Физическая шина

Представляет собой витую пару (экранированную или неэкранированную) и общий провод. Плоская пара (телефонный тип кабеля) также работает хорошо, но более чувствительна к внешним источникам шума.

Высокая надёжность

Для обеспечения безотказной работы в тяжёлых условиях по стандарту ISO11898 CAN-контроллер обеспечивает работу в сети в следующих случаях:

  • любой из 3-х проводов в шине оборван,
  • любой провод - закорочен на питание,
  • любой провод - закорочен на общий провод.

При обрыве 2-х проводов часть функций основной системы может быть реализована в каждой из подсистем, созданных обрывом.

Сетевая гибкость и лёгкость расширения

Принятая в CAN-сети схема передачи сообщений обеспечивает большие возможности при создании, расширении и модернизации систем.

Новые устройства, предназначенные для приёма данных, могут добавляться к сети без изменения уже существующих программных средств, если их подключение не приводит к превышению нагрузочной способности и максимальной длины шины. При этом новые сетевые устройства способны обмениваться информацией между собой, не нарушая работоспособность старой системы, если в протоколе обмена были использованы новые идентификаторы.

В CAN-сети имеется возможность одновременной передачи сообщений сразу нескольким устройствам. Эта особенность позволяет передавать по ней синхросигналы.

Арбитраж CAN-шины

В любой системе некоторые из параметров изменяются быстрее, чем другие. Например, скорость ротора двигателя, как правило, изменяется за меньший промежуток времени, чем температура его корпуса или положение заслонки. Быстро изменяющиеся параметры должны передаваться более часто и, следовательно, требуют более высокого приоритета. Во время работы также возможно появление аварийных сообщений, которые должны передаваться с наивысшим приоритетом (например, превышение допустимой температуры, обрыв управляющего соленоида, короткое замыкание в цепи и т.д.).

Узлы CAN-сети являются равноправными при обмене, и каждый из них в любой момент времени может иметь сообщение, требующее безотлагательной передачи. Вероятность одновременного требования передачи от различных устройств не является чем-то необычайным, а случается регулярно. Для разрешения подобного конфликта требуется быстродействующий механизм распределения очередности передачи сообщений. Для этого в CAN-системе используется Неразрушающий Поразрядный Арбитраж .

Приоритет CAN-сообщения определяется двоичным значением его идентификатора.

Числовое значение каждого идентификатора сообщения назначается в начальной фазе проектирования системы. Идентификатор с самым низким числовым значением идентификатора имеет самый высокий приоритет. Передача логического нуля по CAN-шине осуществляется токовой посылкой, а состояние логической единицы определяется по отсутствию тока. В процессе передачи каждый из источников сообщений, который имеет необходимость в передаче, начинает передавать свой идентификатор, одновременно проверяя его на линии. Если в процессе передачи обнаруживается несовпадение (т.е. "лишний" ноль), то передатчик, обнаруживший это несоответствие, прекращает передачу своего идентификатора и переключается на прием. Конфликта на шине при этом нет, так как значение бита с уровнем логической единицы фактически не передается, и в результате сообщение с наивысшим приоритетом проходит по шине так, как будто оно единственное. В следующем цикле шины будет передано сообщение с более низким приоритетом, и т.д. Таким образом достигается максимальная пропускная способность шины и минимальная задержка для "горячих" сообщений.

Рис. 2. Соединение устройств по CAN-шине

Обнаружение Ошибок

CAN содержит 5-ступенчатый механизм обнаружения ошибок:

  • циклический контроль по избыточности (CRC),
  • контроль передаваемого поля битов,
  • контроль сигнала "Подтверждение Приема",
  • текущий контроль логического уровня битов,
  • контроль заполнения битов.

Циклический контроль по избыточности (CRC)

Каждое переданное сообщение содержит контрольный код (CRC), вычисленный передатчиком на основе содержания передаваемого сообщения. Приёмные узлы выполняют аналогичную операцию, помечают обнаруженные ошибки и устанавливают соответствующие флаги.

Текущий контроль логического уровня битов

Любой передатчик автоматически контролирует и сравнивает фактический логический уровень битов на шине с уровнем, который он передает. Если уровни не совпадают, помечается ошибка логического уровня битов.

(Примечание: этот механизм также используется при арбитраже шины для определения приоритета сообщения, однако ошибка в этом случае, естественно, не возникает).

Контроль передаваемого поля битов

В составе CAN-сообщения передаются предопределенные битовые комбинации, которые контролируются при приёме. Если приемник обнаруживает недопустимый бит в одной из этих комбинаций, то устанавливается флаг ошибки формата.

Контроль заполнения битов

CAN использует методику добавления заполняющего бита для дополнительного контроля передаваемых сообщений. После передачи пяти последовательных битов с одинаковым уровнем передатчик автоматически вводит в разрядный поток бит противоположного значения. Приемники сообщения автоматически удаляют такие биты перед обработкой сообщения. Если обнаруживается шестой бит одинаковой полярности, то помечается ошибка заполнения битов.

Контроль сигнала "Подтверждение Приема"

Каждое переданное сообщение подтверждается приемником, и если этого не произошло, тогда устанавливается флаг ошибки подтверждения приема.

Флаг ошибки

В случае если обнаружена ошибка, то узел, обнаруживший ошибку, прерывает передачу посылкой флага ошибки. При этом передатчик автоматически реинициализирует передачу сообщения, что предотвращает все узлы от возникновения ошибок и гарантирует непротиворечивость данных в сети.

С учетом действия всех механизмов контроля, реальное значение возникновения необнаруженной ошибки в CAN-системе - 10-11 .

Формат CAN-сообщения

Стандартный CAN-протокол (версия 2.0A) поддерживает формат сообщения с 11-разрядными идентификаторами (Стандартное сообщение).

Расширенный CAN-протокол (версия 2.0B) поддерживает 11-битовый и 29-битовый форматы идентификаторов (Расширенное сообщение).

Большинство контроллеров версии 2.0A передают и принимают только сообщения стандартного формата, хотя часть из них могут только получать сообщения расширенного формата.

Контроллеры версии 2.0B могут посылать и получать сообщения в обоих форматах.

Различия форматов

В версии 2.0B поле битов идентификатора состоит из двух частей.

Первая часть (основная часть идентификатора) имеет длину одиннадцать битов для совместимости с версией 2.0A, вторая часть - восемнадцать битов (расширение идентификатора), что дает общую длину идентификатора в двадцать девять бит.

Для различения форматов используются биты Identifier Extension (IDE) и Substitute Remote Request (SRR) в Поле Арбитража.

Входящий в МК STM32 CAN-контроллер является полнофункциональным CAN-узлом, отвечающий требованиям к активным и пассивным устройствам CAB 2.0A и 2.0B и поддерживающий передачу данных на скорости не более 1 Мбит/сек. CAN-контроллер оснащен также дополнительными возможностями для организации детерминистической передачи данных по специальному CAN-протоколу передачи в реальном времени TTCAN. После активизации функции TTCAN будет поддерживаться автоматическая повторная передача сообщений и автоматическая вставка в CAN-пакет двух дополнительных байт с зафиксированным моментом времени передачи сообщения. Все эти возможности необходимы в системах управления через CAN-интерфейс в масштабе реального времени.

Полное наименование CAN-контроллера - модуль bxCAN, где bx указывает на поддержку модулем дополнительных возможностей. Обычный модуль CAN использует один буфер приема и передачи, а у расширенного модуля CAN используется несколько буферов приема и передачи. Модуль bxCAN является гибридом двух архитектур модулей CAN. У него имеется три почтовых ящика для передаваемых сообщений и два почтовых ящика для принимаемых сообщений. Каждый из принимающих почтовых ящиков имеет буфер FIFO для помещения в него трех сообщений. Данная архитектура является компромиссной с точки зрения производительности передачи данных и занимаемого места в кристалле ИС.


Модуль CAN оснащен тремя почтовыми ящиками для передачи сообщений и имеет возможность автоматической вставки в сообщение текущего времени по протоколу TTCAN

Следующая важная функция CAN-контроллера - фильтрация получаемых сообщений. Поскольку CAN является широковещательной шиной, каждое переданное сообщение принимается всеми узлами шины. В CAN-шине любой разумной степени сложности передается достаточно большое число сообщений. Задачей каждого подключенного к CAN-узлу ЦПУ является реагирование на CAN-сообщения. Таким образом, чтобы избавить CAN-контроллер от проблемы приема в буфер нежелательных сообщений, необходима их фильтрация. У CAN-контроллера микроконтроллеров STM32 имеется 14 банков фильтров, которые можно использовать для блокировки всех CAN-сообщений, кроме избранных сообщений или групп сообщений.


14 фильтров сообщений поддерживают две конфигурации, которые можно использовать для фильтрации индивидуальных сообщений

Каждый банк фильтров состоит из двух 32-битных регистров и может работать в одном из четырех режимов. При использовании базового метода в каждый регистр банка фильтров записывается идентификатор сообщения. После поступления сообщения проверяется его идентификатор и, исходя из этого, принимается решение о приеме или отклонении сообщения. Данный режим поддерживает две конфигурации. В первой конфигурации регистры банков фильтров являются 3-битными и могут использоваться для фильтрации 11- и 29-битных полей идентификаторов сообщения, а также бит RTR и IDE в 16-битном режиме.

Во второй конфигурации, в первый 32-битный регистр записывается идентификатор сообщения, во второй - маска сообщения. Регистр маски маркирует биты регистра идентификатора, как "важный" или "неважный". Благодаря этому, появляется возможность принимать группу сообщений с помощью одного банка фильтров. Если принимающие фильтры пропускают сообщение, то вместе с ним принимающий буфер FIFO будет записан указатель на определивший совпадение фильтр. Это позволит прикладной программе ускорить идентификацию сообщения без необходимости считывания и дешифрации идентификатора пакета сообщения.

Все CAN-контроллеры поддерживают два режима работы: нормальный режим для приема и передачи пакетов сообщений и режим инициализации для задания параметров связи. Как уже говорилось, МК STM32 могут работать в экономичном режиме SLEEP. В этом режиме синхронизация модуля bxCAN отключена, однако доступ к регистрам почтовых ящиков остается возможным. Модуль bxCAN имеет возможность активизации работы при обнаружении активности на шине CAN. Его работу можно также реактивировать прикладной программой. Работая в нормальном режиме, поддерживаются два дополнительных подрежима. Первый подрежим - режим SILENT. В нём CAN-контроллер может принимать сообщения, но не может передавать и не генерирует бит ошибок в посылке и подтверждения сообщения. Данный режим рассчитан на CAN-шины с пассивным мониторингом. Второй подрежим - режим LOOPBACK. В этом режиме, передаваемые сообщения сразу же принимаются в приемный буфер. Он необходим для реализации диагностических функций и также полезен на фазе отладки кода программы. Оба рассмотренных режима можно комбинировать. Они идеальны для выполнения функций самотестирования при подключении к работающей шине.

  • DIY или Сделай сам ,
  • Электроника для начинающих
  • Сегодня я хочу познакомить вас с интересной микроконтроллерной платформой CANNY . Это обзорная статья в которой вы узнаете о технологии, а в последующих статьях я расскажу вам о работе с сообщениями CAN, интеграции CANNY c Arduino Mega Server и о тех возможностях, которые предоставляет эта связка.

    Почему CANNY? От названия шины CAN, которая широко используется на транспорте и, в частности, во всех современных автомобилях в качестве бортовой сети. Итак, что же можно сделать, имея специализированный контроллер, подключённый к CAN шине вашего автомобиля?

    Шина CAN

    Образно говоря, шина CAN это нервная система вашего автомобиля. По ней передаётся вся информация о состоянии блоков и систем, а также управляющие команды, которые во многом определяют поведение автомобиля. Зажигание фар, открывание и закрывание дверей, управление проигрыванием музыки в салоне машины, срабатывание сигнализации и т. д. - всё это работает и управляется по этой шине.

    Физически, шина CAN представляет собой два перевитых провода и очень проста в монтаже и подключении. Несмотря на свою простоту, она, благодаря своей дифференциальной природе, хорошо защищена от различных наводок и помех. Высокая надежность и большая допустимая длина сети, до 1000 метров, помогла CAN завоевать широкую популярность у производителей различного, не только автомобильного оборудования.

    Контроллеры CANNY

    Это целое семейство специализированных контроллеров, имеющих встроенную «родную» поддержку работы с шиной CAN. Это касается как «железной» части, так и поддержки на уровне «софта».

    Флагманом линейки является контроллер CANNY 7, наиболее мощный и имеющий максимум возможностей. Большое количество памяти, мощные выходы, позволяющие напрямую управлять реле автомобиля, интеллектуальная система защиты от коротких замыканий, защита от бросков тока и напряжения в бортовой сети автомобиля - всё это делает этот контроллер отличным решением для воплощения любых ваших идей и проектов.

    Кроме CANNY 7 в линейке контроллеров присутствует ещё несколько моделей, мы будем проводить свои эксперименты с более простой встраиваемой моделью CANNY 5 Nano. Она также поддерживает работу с CAN шиной, но при этом похожа на уже знакомую нам Arduino Nano.

    Визуальное программирование

    Развитая поддержка шины CAN это не единственная особенность этих контроллеров, кроме этого CANNY имеют свою собственную среду программирования, CannyLab, но не «обычную», а визуальную, где весь процесс написания программ сводится к манипулированию готовыми структурными блоками, заданию их параметров и соединению входов и выходов этих блоков в определённой последовательности, в соответствии с алгоритмом решаемой задачи.

    Ни одной строчки кода!

    Хорошо это или плохо? На мой взгляд, это дело привычки. Мне, как человеку привыкшему к «традиционному» программированию, было непривычно манипулировать блоками, вместо написания строк кода. С другой стороны, существует множество приверженцев именно такого подхода к составлению алгоритмов и считается, что для инженеров и «не программистов» это наиболее простой и доступный метод программирования микроконтроллеров.

    Мне, как минимум, было «прикольно» составлять программы таким образом и через некоторое время мне это стало даже нравиться. Возможно, что если продолжить этим заниматься, то через некоторое время уже написание кода покажется неудобным.

    CannyLab является бесплатной средой разработки и вы можете свободно скачать её с сайта разработчиков, она также не требует специальной процедуры инсталляции - достаточно распаковать файл с архивом - и вы можете начинать работу.

    Подключение

    Подключение CANNY 5 Nano к компьютеру мало чем отличается от подключения контроллеров Arduino. При наличии в системе драйвера Silicon Labs CP210x, либо после его установки из скаченного дистрибутива CannyLab, Windows создаёт виртуальный COM порт и CANNY готов к работе. В моём случае понадобилось ещё перезагрузить компьютер, но возможно это особенность моей системы.

    Практические примеры

    Давайте на простых примерах разберём, как в CannyLab выполнять действия, привычные нам в Arduino IDE. Начнём с традиционного мигания светодиодом.

    В контроллере CANNY 5 на выводе С4 (Channel 4) присутствует тестовый светодиод (аналог светодиода, находящегося на 13 выводе в Arduino). И его тоже можно использовать для индикации и экспериментов, чем мы и воспользуемся.

    Что же нужно, чтобы помигать светодиодом в контроллере CANNY? Нужно сделать всего две вещи - сконфигурировать пин четвертого канала как выход и подать на этот выход сигнал с ШИМ генератора. Все эти действия мы уже не раз проделывали в Arduino IDE, посмотрим как это выглядит в CannyLab.

    Итак, конфигурируем пин четвертого канала как выход

    Настраиваем генератор ШИМ. Задаём период 500 миллисекунд, заполнение - 250 миллисекунд (то есть 50 %) и 1 (true) на входе генератора «Старт» и… всё! Больше ничего делать не нужно - программа готова, осталось только залить её в контроллер.

    Режим симуляции

    Тут нужно сказать пару слов о процессе симуляции на компьютере работы контроллера и заливке разработанной программы в память «железного» контроллера.

    Среда разработки CannyLab позволяет запускать и отлаживать программу, не записывая её в память контроллера. В режиме симуляции вы можете видеть результат работы программы прямо в реальном времени и даже вмешиваться в её работу.

    Заливка в контроллер

    Для работы контроллеров CANNY, перед заливкой программы (в терминологии разработчиков «диаграммы») нужно сначала залить операционную систему «Устройство/Системное ПО/Записать». Это нужно сделать только один раз, для этого нужно выбрать соответствующий вашему контроллеру файл с расширением .ccx .

    После того, как программа написана и отлажена, её можно загрузить в ваш контроллер. Это делается просто - в меню выбираете пункт «Устройство/Диаграмма/Записать» и через несколько секунд программа оказывается записанной в контроллер.

    Аналоговые входы

    Для того, чтобы лучше понять принцип программирования контроллеров CANNY в среде разработке CannyLab, давайте ещё разберём пример работы с аналоговым входом в этой системе.

    Мы будем отслеживать уровень напряжения на 10 пине контроллера и если он находится в диапазоне 2,5 В ± 20%, будем зажигать встроенный в плату светодиод.

    Как и в предыдущем примере, конфигурируем 4-й пин как выход для того, чтобы иметь возможность управлять работой светодиода.

    Включаем АЦП на 10-м канале.

    Блок «Логическое И» довершает работу и со своего выхода управляет работой светодиода на плате.

    Вот и всё. То, что мы привычно делали на Arduino, мы легко сделали в CannyLab. Осталось только освоиться в этой среде программирования и вы сможете легко и непринуждённо создавать свои проекты на этой платформе.

    Эти простые примеры составления программ даны для того, чтобы вы могли понять принцип визуального программирования микроконтроллеров CANNY. В дальнейшей работе вам поможет отличная справочная документация и поддержка разработчиков на сайте и форуме системы.

    Впервые идея CAN была предложена в середине 80-х немецкой компанией Robert Bosch, которая задумывала ее в качестве экономичного средства для объединения контроллеров, расположенных внутри автомобиля. Традиционный способ связи распределенных по объекту контроллеров жгутами проводов по своей технической сложности, по ценовым и по весовым параметрам для столь массового изделия, коим является автомобиль, оказался непригоден. Требовалось альтернативное решение, сокращающее количество проводов, поэтому был предложен протокол CAN, для которого достаточно любой проводной пары.

    Идея заключалась в том, чтобы создать сетевое решение для распределённых систем, работающих в реальном времени. Первоначально CAN применялся в автомобилях, но затем область его применения расширилась и на проблемы автоматизации технологических процессов.

    CAN обеспечивает высокий уровень защиты данных от повреждения даже при работе в сложных условиях (сильные помехи), при этом достигается достаточно большая скорость передачи данных (до 1 Mbit/s). Важным достоинством CAN является также то, что разработчик системы может влиять на приоритет сообщений с тем чтобы самые важные из них не ожидали в очереди на отправку. Это свойство CAN позволяет строить сети, поддерживающие реальный масштаб времени.

    Высокая степень и надежности сети благодаря развитым механизмам обнаружения и исправления ошибок, самоизоляции неисправных узлов, нечувствительность к высокому уровню электромагнитных помех обеспечивает сети широчайшую сферу применения.

    Среди многочисленных факторов, обеспечивших взлет популярности CAN в последние годы, следует отметить разнообразие элементной базы CAN и ее дешевизну.

    Немалую роль играет и возможность поддержки разнотипных физических сред передачи данных - от дешевой витой пары до оптоволокна и радиоканала. А ряд оригинальных механизмов сетевого взаимодействия (мультимастерность, широковещание, побитовый арбитраж) в сочетании с высокой скоростью передачи данных (до 1 Мбит/с) способствуют эффективной реализации режима реального времени в системах распределенного управления.

    Топология сети CAN.

    В любой реализации CAN - носитель (физическая среда передачи данных) интерпретируется как эфир, в котором контроллеры, работают как приемники и передатчики. При этом, начав передачу, контроллер не прерывает слушание эфира, в частности он отслеживает и контролирует процесс передачи текущих, предаваемых им же, данных. Это означает, что все узлы сети одновременно принимают сигналы передаваемые по шине. Невозможно послать сообщение какому-либо конкретному узлу. Все узлы сети принимают весь трафик передаваемый по шине. Однако, CAN-контроллеры предоставляют аппаратную возможность фильтрации CAN-сообщений.

    CAN сеть предназначена для коммуникации так называемых узлов. Каждый узел состоит из двух составляющих. Это собственно CAN контроллер, который обеспечивает взаимодействие с сетью и реализует протокол, и микропроцессор (CPU).

    CAN контроллеры соединяются с помощью шины, которая имеет как минимум два провода CAN_H и CAN_L , по которым передаются сигналы при помощи специализированных ИМС приемо-передатчиков. Кроме того, ИМС приемо-передатчиков реализуют дополнительные сервисные функции:

    • Регулировка скорости нарастания входного сигнала путем изменением тока на входе.
    • Встроенная схема ограничения тока защищает выходы передатчиков от повреждения при возможных замыканиях линий CAN_H и CAN_L с цепями питания, а также от кратковременного повышения напряжения на этих линиях.
    • Внутренняя тепловая защита.
    • Режим пониженного энергопотребления, в котором приемники продолжают сообщать контроллеру о состоянии шины для того, чтобы при обнаружении на шине информационных сигналов он мог вывести приемопередатчики в нормальный режим работы.

    Наиболее широкое распространение получили два типа приемоперадатчиков (трансиверов):

    • "High Speed" приемопередатчики (ISO 11898-2),
    • "Fault Tolerant" приемопередатчики

    Трансиверы, выполненные в соответствии со стандартом "High-Speed" (ISO11898-2), наиболее просты, дешевы и дают возможность передавать данные со скоростью до 1 Мбит/c. "Fault-Tolerant" приемопередатчики (не чувствительные к повреждениям на шине) позволяют построить высоконадежную малопотребляющую сеть со скоростями передачи данных не выше 125 кбит/c.

    Физический уровень канала CAN.

    Физический уровень (Physical Layer) протокола CAN определяет сопротивление кабеля, уровень электрических сигналов в сети и т.п. Существует несколько физических уровней протокола CAN (ISO 11898, ISO 11519, SAE J2411). В подавляющем большинстве случаев используется физический уровень CAN определенный в стандарте ISO 11898.

    ISO 11898 в качестве среды передачи определяет двухпроводную дифференциальную линию с импедансом (терминаторы) 120 Ом (допускается колебание импеданса в пределах от 108 Ом до 132 Ом.

    Максимальная скорость сети CAN в соответствие с протоколом равна 1 Mbit/s. При скорости в 1 Mbit/sec максимальная длина кабеля равна примерно 40 метрам. Ограничение на длину кабеля связано с конечной скоростью распространения сигнала и механизмом побитового арбитража (во время арбитража все узлы сети должны получать текущий бит передачи одновременно, те сигнал должен успеть распространится по всему кабелю за единичный отсчет времени в сети.

    Соотношение между скоростью передачи и максимальной длиной кабеля приведено в таблице: скорость передачи максимальная длина сети 1000 Кбит/сек 40 метров 500 Кбит/сек 100 метров 250 Кбит/сек 200 метров 125 Кбит/сек 500 метров 10 Кбит/сек 6 километров.

    Разъемы для сети CAN до сих пор НЕ СТАНДАРТИЗОВАНЫ. Каждый протокол высокого уровня обычно определяет свой тип разъемов для CAN-сети.

    Логический ноль регистрируется, когда на линии CAN_H сигнал выше, чем на линии CAN_L.
    Логическая единица - в случае когда сигналы CAN_HI и CAN_LO одинаковы (отличаются менее чем на 0.5 В).
    Использование такой дифференциальной схемы передачи делает возможным работу CAN сети в очень сложных внешних условиях.
    Логический ноль - называется доминантным битом, а логическая единица - рецессивным. Эти названия отражают приоритет логической единицы и нуля на шине CAN.

    При одновременной передаче в шину лог. нуля и единицы, на шине будет зарегестрирован только логический ноль (доминантный сигнал), а логическая единица будет подавлена (рецессивный сигнал).

    Арбитраж шины CAN.

    Быстродействие CAN сети (до 1 Mbit/s) достигается благодаря механизму недеструктивного арбитража шины посредством сравнения бит конкурирующих сообщений. Т.е. если случится так что одновременно начнут передачу несколько контроллеров, то каждый из них сравнивает бит, который собирается передать на шину с битом, который пытается передать на шину конкурирующий контроллер. Если значения этих битов равны оба контроллера пытаются передать следующий бит. И так происходит до тех пор пока значения передаваемых битов не окажутся различными. Теперь контроллер, который передавал логический ноль (более приоритетный сигнал) будет продолжать передачу, а другой(другие) контроллер прервёт свою передачу до того времени пока шина вновь не освободится. Конечно,если шина в данный момент занята,то контроллер не начнет передачу до момента её освобождения.

    Эта спецификация CAN исходит из предположения, что все CAN контроллеры принимают сигналы с шины одновременно. Т.е. в одно и то же время один и тот же бит принимается всеми контроллерами в сети. С одной стороны такое положение вещей делает возможным побитовый арбитраж, а с другой стороны ограничивает длину CAN bus. Сигнал распространяется по CAN bus с огромной, но конечной, скоростью и для правильной работы CAN нужно, чтобы все контроллеры "услышали" его почти одновременно. Почти, потому что каждый контроллер принимает бит в течении определённого промежутка времени, отсчитываемого системным часам. Таким образом, чем выше скорость передачи данных, тем меньшая длинна CAN bus возможна.

    Структура формата передачи данных.

    Данные по CAN сети пересылаются в виде отдельных кадров стандартного формата. Наиболее важными полями являются поле идентификатора (identifier) и собственно данные (data).

    Идентификатор служит уникальным именем для типа сообщения и определяет то, кем будет принято и как будет интерпретировано следующее за ним поле данных. Чему именно (арифметически) равно это число, в общем случае не имеет значения. Такая контекстная адресация отличается рядом достоинств для сетей небольшого масштаба. Она обеспечивает максимально возможную простоту модернизации. Поскольку децентрализованные контроллеры никак не связаны между собой логически, добавление нового элемента в систему никак не повлияет на поведение всех остальных.

    Более интересным представляется использование идентификаторов в качестве основного инструмента, используемого в процедуре разрешения коллизий. В CAN в качестве основного критерия для разбора коллизий, для принятия решения, кому отдать эфир, используется приоритет сообщений. Если одновременно несколько станций начали передачу, и при этом произошла коллизия, происходит суперпозиция передаваемых идентификаторов. Идентификаторы последовательно, побитно (bitwise), начиная со старшего, налагаются друг на друга и в их "противоборстве" выигрывает тот, у кого меньше арифметическое значение идентификатора, а значит, выше приоритет. Доминантный "нуль" подавит единицы и в любом случае к концу передачи поля идентификатора оно станет равно более приоритетному значению. Таким образом, система позволяет на уровне проектирования (и определения идентификатра) для любого сообщения в системе заранее предопределить его приоритетность в обслуживании.

    Приоритетность сообщения, таким образом определяется значением идентификатора. Приоритет тем больше, чем идентификатор меньше. Как правило контроллер позволяет задавать лишь эти два поля. Остальные поля используются для передачи специфических данных, необходимых для функционирования CAN.

    Форматы кадра.

    Данные в CAN передаются короткими сообщениями-кадрами стандартного формата. В CAN существуют четыре типа сообщений:

    • Data Frame
    • Remote Frame
    • Error Frame
    • Overload Frame

    Data Frame - это наиболее часто используемый тип сообщения. Он состоит из следующих основных частей: поле арбитража (arbitration field) определяет приоритет сообщения в случае, когда два или более узлов одновременно пытаются передать данные в сеть.

    Поле арбитража состоит в свою очередь из:

    • для стандарта CAN-2.0A, 11-битного идентификатора + 1 бит RTR (retransmit)
    • для стандарта CAN-2.0B, 29-битного идентификатора + 1 бит RTR (retransmit)

    Следует еще раз отметить, что поле идентификатора, несмотря на свое название никак не идентифицирует само по себе ни узел в сети, ни содержимое поля данных.

    Для Data кадра бит RTR всегда выставлен в логический ноль (доминантный сигнал). Поле данных (data field) содержит от 0 до 8 байт данных поле CRC (CRC field) содержит 15-битную контрольную сумму сообщения, которая используется для обнаружения ошибок слот подтверждения (Acknowledgement Slot) (1 бит), каждый CAN-контроллер, который правильно принял сообщение посылает бит подтверждения в сеть. Узел, который послал сообщение слушает этот бит, и в случае если подтверждение не пришло, повторяет передачу. В случае приема слота подтверждения передающий узел может быть уверен лишь в том, что хотя бы один из узлов в сети правльно принял его сообщение.

    Remote Frame - это Data Frame без поля данных и с выставленным битом RTR (1 - рецессивные бит). Основное предназначение Remote кадра - это инициация одним из узлов сети передачи в сеть данных другим узлом. Такая схема позволяет уменьшить суммарный трафик сети. Однако, на практике Remote Frame сейчас используется редко (например, в DeviceNet Remote Frame вовсе не используется).

    Error Frame - это сообщение которое явно нарушает формат сообщения CAN. Передача такого сообщения приводит к тому, что все узлы сети регистрируют ошибку формата CAN-кадра, и в свою очередь автоматически передают в сеть Error Frame. Результатом этого процесса является автоматическая повторная передача данных в сеть передающим узлом. Error Frame состоит из поля Error Flag, которое состоит из 6 бит одинакового значения (и таким образом Error frame нарушает проверку Bit Stuffing, см. ниже), и поля Error Delimiter, состоящее из 8 рецессивных битов. Error Delimiter дает возможность другим узлам сети обнаружив Error Frame послать в сеть свой Error Flag.

    Overload Frame - повторяет структуру и логику работы Error кадра, с той разницей, что он используется перегруженным узлом, который в данный момент не может обработать поступающее сообщение, и поэтому просит при помощи Overload-кадра о повторной передаче данных. В настоящее время Overload-кадр практически не используется.

    Мехнизм обработки ошибок.

    Надежность CAN сети определяется также механизмами обнаружения ошибок. Стандарт CAN определяет следующие методы обнаружения ошибок в сети CAN:

    • Check Bit monitoring
    • Bit stuffing
    • Frame check
    • ACKnowledgement Check
    • Check CRC

    Check Bit monitoring - каждый узел во время передачи битов в сеть сравнивает значение передаваемого им бита со значением бита которое появляется на шине. Если эти значения не совпадают, то узел генерирует ошибку Bit Error. Естественно, что во время арбитража на шине (передача поля арбитража в шину) этот механизм проверки ошибок отключается.

    Bit stuffing - когда узел передает последовательно в шину 5 бит с одинаковым значением, то он добавляет шестой бит с противоположным значением. Принимающие узлы этот дополнительный бит удаляют. Если узел обнаруживает на шине больше 5 последовательных бит с одинаковым значением, то он генерирует ошибку Stuff Error.

    Frame Check - некоторые части CAN-сообщения имеют одинаковое значение во всех типах сообщений. Т.е. протокол CAN точно определяет какие уровни напряжения и когда должны появляться на шине. Если формат сообщений нарушается, то узлы генерируют ошибку Form Error.

    ACKnowledgement Check - каждый узел получив правильное сообщение по сети посылает в сеть доминантный (0) бит. Если же этого не происходит, то передающий узел регистрирует ошибку Acknowledgement Error.

    CRC Check - каждое сообщение CAN содержит CRC сумму, и каждый принимающий узел подсчитывает значение CRC для каждого полученного сообщения. Если подсчитанное значение CRC суммы, не совпадает со значением CRC в теле сообщения, принимающий узел генерирует ошибку CRC Error.

    Каждый узел сети CAN, во время работы пытается обнаружить одну из пяти возможных ошибок. Если ошибка обнаружена, узел передает в сеть Error Frame, разрушая тем самым весь текущий трафик сети (передачу и прием текущего сообщения). Все остальные узлы обнаруживают Error Frame и принимают соответствующие действия (сбрасывают принятое сообщение).

    Кроме того, каждый узел ведет два счетчика ошибок:

    • Transmit Error Counter (счетчик ошибок передачи) и
    • Receive Error Counter (счетчик ошибок приема).

    Эти счетчики увеличиваются или уменьшаются в соответствие с несколькими правилами. Сами правила управления счетчиками ошибок достаточно сложны, но сводятся к простому принципу, ошибка передачи приводит к увеличению Transmit Error счетчика на 8, ошибка приема увеличивает счетчик Receive Error на 1, любая корректная передача/прием сообщения уменшают соответствующий счетчик на 1. Эти правила приводят к тому, что счетчик ошибок передачи передающего узла увеличивается быстрее, чем счетчик ошибок приема принимающих узлов. Это правило соответствует предположению о большой вероятности того, что источником ошибок является передающий узел.

    Каждый узел CAN сети может находится в одном из трех состояний. Когда узел стартует он находится в состоянии Error Active. Когда, значение хотя бы одного из двух счетчиков ошибок превышает предел 127, узел переходит в состояние Error Passive. Когда значение хотя бы одного из двух счетчиков превышает предел 255, узел переходит в состояние Bus Off.

    Узел находящийся в состоянии Error Active в случае обнаружения ошибки на шине передает в сеть Active Error Flags. Active Error Flags сотстоит из 6 доминантных бит, поэтому все узлы его регистрируют.

    Узел в состоянии Passive Error передает в сеть Passive Error Flags при обнаружении ошибки в сети. Passive Error Flags состоит из 6 рецессивных бит, поэтому остальные узлы сети его не замечают, и Passive Error Flags лишь приводит к увеличению Error счетчика узла.

    Узел в состоянии Bus Off ничего не передает в сеть (не только Error кадры, но вообще никакие другие).

    Адресация и протоколы высокого уровня

    Однако сетевых сервисов спецификации Robert Bosch CAN Specification 2.0A/B и международного стандарта ISO 11898 зачастую явно недостаточно для эффективной разработки CAN-сетей. Дело в том, что упомянутые документы описывают лишь два самых нижних уровня эталонной (семиуровневой) модели взаимосвязи открытых систем OSI/ISO физический и канальный. Определены форматы сообщений, процессы передачи данных длиной до 8 байт, механизмы обнаружения ошибок, некоторые физические параметры среды передачи данных (только в ISO 11898) и др.
    Но "за кадром" остаются такие важные на этапе разработки моменты, как адресация узлов, распределение между ними CAN-идентификаторов, интерпретация содержимого фрейма данных, передача данных длиной более 8 байт и др.

    В CAN не существует явной адресации сообщений и узлов, сообщения не имеют явной адресации приемника. Источник выставляет на шину свой идентификатор и данные, а приемник самостоятельно, исходя из решаемых задач, обрабатывет принятые данные от данного источника, либо игнорирует их.
    Протокол CAN нигде не указывает что поле арбитража (Identification field + RTR) должно использоваться как идентификатор сообщения или узла. Таким образом, идентификаторы сообщений и адреса узлов могут находится в любом поле сообщения (в поле арбитража или в поле данных, или присутствовать и там, и там).

    С другой стороны, стандарт протокола предусматривает возможность удаленного запроса данных (RTR). В отличие от предыдущего описания, приемник не ожидает появления необходимых данных, а запрашивает данные у необходимого узла.

    Точно также протокол не запрещает использовать поле арбитража для передачи данных.

    Стандарт CAN не регламентирует каким образом конкретные приложения будут передавать специфичные для себя данные по сети CAN. Т.о. возникает потребность в использовании какого-нибудь протокола верхнего уровня. Можно придумать свой протокол, который позволял бы приложениям работать с CAN сетью просто и удобно, но едва ли стоит тратить на это силы, если уже существует множество высокоуровневых протоколов на основе CAN технологии. Причём это открытые протоколы, т.е. можно получить уже готовые спецификации и даже участвовать в дальнейшем развитии данных систем.

    Поэтому с началом массового выпуска CAN- компонентов и широкого распространения CAN-приложений рядом независимых компаний и некоммерческих ассоциаций в области систем промышленной автоматизации, транспорта и т. д. проводилась (и продолжается по сей день) работа по созданию и стандартизации спецификаций протоколов верхнего уровня HLP (Higher Level Protocol) для CAN-сетей.

    Утилизация поля арбитража и поля данных, и распределение адресов узлов, идентификаторов сообщений и приоритетов в сети является предметом рассмотрений так называемых протоколов высокого уровня (HLP - Higher Layer Protocols).

    Название HLP отражает тот факт, что протокол CAN описывает только два нижних уровня эталонной сетевой модели ISO/OSI, а остальные уровни описываются протоколами HLP.

    К настоящему времени известно уже более четырех десятков CAN HLP. Среди подобного многообразия CAN HLP наибольшее распространение, в особенности в системах промышленной автоматизации, получили четыре, поддерживаемых ассоциацией CiA, а именно:

    • CAL/ CANopen,
    • CAN Kingdom,
    • DeviceNet и

    CAL/CANopen

    Разработка и поддержка открытого протокола прикладного уровня для сетей промышленной автоматизации были одними из приоритетных целей создания организации CiA в 1992 году. Основой такого протокола послужил HLP, разработанный фирмой Philips, после доработки и усовершенствования которого рабочей группой CiA, в 1993 году была опубликована спецификация CAL CAN Application Level (CiA DS 20x).

    Сетевые CAN приложения, основанные на прикладном уровне CAL, в настоящее время успешно работают в медицинской электронике, системах контроля дорожного движения, на транспорте, в промышленном оборудовании. Результатом дополнения CAL (точнее, некоторого его подмножества) системой профилей (устройств, интерфейсов, приложений и т. д.) и спецификациями физического уровня (типы соединителей, правила битового квантования и т. д.) явилось появление более "конкретного" стандарта протокола CANopen. По существу CANopen является приложением прикладного уровня CAL. Первоначально CANopen предназначался для сетей управления движущимися механизмами в системах промышленной автоматики.
    Однако впоследствии протокол нашел применение в медицине, морской электронике, на транспорте и в системах автоматизации зданий. CANopen базируется на двух уровнях стандарта CAN (ISO 11898, Bosch CAN Specification 2.0 A/B). В дополнение к спецификациям физического уровня ISO 11898 (среда передачи данных двухпроводная дифференциальная линия), CANopen содержит собственные правила битового квантования, а также определяет три рекомендуемых типа соединителей. Разводкой контактов для всех типов соединителей предусмотрена возможность подачи питания на трансиверы узлов, имеющих гальваническую развязку. В сети CANopen определены восемь градаций скоростей передачи данных: 1 Мбит/с, 800 кбит/с, 500, 250, 125, 50, 20 и 10 кбит/с. Поддержка скорости 20 кбит/с является обязательной для всех модулей.

    CAN Kingdom

    Протокол шведской компании KVASER-AB (www.kvaser.se) занимает особое место среди CAN HLP благодаря оригинальной концепции сетевого взаимодействия и эффективности CAN-приложений на его основе.

    Началу работ над первой версией (текущая третья) протокола CAN Kingdom в 1990 году предшествовал многолетний опыт компании в области создания систем распределенного управления. Протокол был специально разработан для управления движущимися машинами и механизмами промышленными роботами, текстильными станками, мобильными гидравлическими устройствами, и позволяет достичь высокой производительности в режиме реального времени при удовлетворении жестких требований безопасности.

    CAN Kingdom является также основой американского военного стандарта CDA 101 и широко используется в военной технике от надувных лодок и систем наведения на цели до сверхзвуковых истребителей и ракет. Основной целью создания протокола было предоставление системному разработчику максимальной свободы в реализации своих идей при построении сети, сохранив при этом возможность использования стандартных модулей от независимых производителей. CAN Kingdom не является "готовым" протоколом в том смысле, в каком это справедливо, например, по отношению к стандартам типа CANopen или DeviceNet. Это скорее набор примитивов метапротокол, с помощью которых можно "собрать" протокол под конкретную сеть модулей. Этим достигается уникальное сочетание простоты интеграции готовых модулей с высокой степенью "закрытости" оригинального протокола. Краеугольным камнем концепции сетевого взаимодействия CAN Kingdom является принцип: "Модули обслуживают сеть" (MSN Modules Serves the Network) в отличие от принципа "Сеть обслуживает пользователей" (NSM Network Serves the Modules), свойственного компьютерным сетям.

    В сеть CAN Kingdom не существует каких-либо рекомендуемых скоростей передачи данных. Но за первые 200 мс после подачи питания узел обязан настроиться на прослушивание шины на скорости 125 кбит/ с. Допустимы отличающиеся от ISO 11898 спецификации физического уровня.

    DeviceNet

    DeviceNet протокол, разработанный и опубликованный в 1994 году компанией Allen-Bradley (www.ab.com) корпорации Rockwell и впоследствии переданный в ведение специально организованной для его поддержки ассоциации ODVA (Open DeviceNet Vendor Association Inc., www.odva.org).

    DeviceNet недорогое, простое и эффективное решение для объединения разнообразных устройств промышленной автоматизации независимых производителей в единую систему: фото-, термодатчики, стартеры, считыватели штриховых кодов, элементы человеко- машинного интерфейса клавиатуры, дисплейные панели, наряду с управляющими устройствами PLC, компьютерами и т. д. При разработке протокола помимо снижения стоимости также стояла задача упрощения и унификации диагностики подобных устройств. Первые устройства, удовлетворяющие спецификации DeviceNet, появились на рынке в начале 1995 года. DeviceNet также построен на двух нижних уровнях стандарта CAN, дополненных более детальными, чем в других HLP, спецификациями физической среды.

    Сеть DeviceNet имеет шинную топологию с отводами. Физической средой передачи является 4- проводной кабель (CAN_H, CAN_L, Vcc, Ground), причем возможны две его разновидности: толстый (внешний диаметр 12,2 мм) и тонкий (6,9 мм). Определены лишь три значения скорости передачи данных 125, 250 и 500 кбит/с.

    Важной особенностью сети DeviceNet является возможность питания модулей непосредственно от сетевого кабеля (24 В, до 8 А на толстом кабеле), а также допускается применение нескольких источников питания в любой точке шины. Все это дает возможность построения автономной сети, не зависящей от наличия или качества внешнего питания, а при необходимости позволит легко демонтировать и снова развернуть систему на новом месте.

    Сеть DeviceNet допускает "горячее" (без обесточивания сети) подключение и отключение модулей. Стандарт DeviceNet содержит также подробное описание многочисленных типов переходников, разветвителей (одиночных и многопортовых), соединителей (Mini, Micro), сетевых отводов и т. п. При описании организации типов данных, сетевого поведения модулей в DeviceNet используется объектно-ориентированная модель.

    Максимальное число узлов в сети DeviceNet 64.

    SDS (Smart Distributed System)

    SDS разработка компании Honeywell Inc. (Micro Switch Division, www.honeywell.sensing.com). Наряду со стандартом DeviceNet, SDS представляет собой еще одно недорогое и законченное решение для сетевого управления интеллектуальными датчиками и актуаторами от центрального контроллера (PLC, компьютера) в системах промышленной автоматизации. По степени завершенности от спецификаций физической среды до прикладного уровня, ориентировке на снижение стоимости, SDS-стандарт напоминает DeviceNet. Шинная топология представляет собой линейную шину (магистраль или транк) с короткими отводами.

    Определены два базовых типа кабельной разводки:

    • Mini (применяемый при сборке транка сети) 4-проводной кабель с максимальной токовой нагрузкой 8 А, 5-контактный разъем и
    • Micro (для подключения физических устройств к сети) 4-проводной кабель, 3 А, 4-контактный разъем без отдельного контакта для экрана кабеля.

    В сети SDS допускается и обычная проводная разводка с использованием открытых клеммных соединителей. Всеми типами кабельной разводки и соединителей, также как и в сети DeviceNet, предусмотрено подведение питающего напряжения к узлам.

    Сеть SDS всегда требует наличия единственного мастера-менеджера сети как минимум на этапе включения для выполнения автонастройки скорости передачи модулей. В процессе работы сети допускается наличие нескольких мастеров на шине, но они должны функционировать в пределах своих адресных доменов, а при включении сети только один из них может брать на себя функцию сетевого менеджера для автонастройки скорости устройств.



    Просмотров