Лазерная связь - еще один способ беспроводной связи. Интересные факты и полезные советы

Оптические волокна и лазерная связь

Со времен античности свет использовался для передачи сообщений. В Китае, Египте, и в Греции использовали днем дым, а ночь огонь для передачи сигналов. Среди первых исторических свидетельств оптической связи мы можем вспомнить осаду Трои. В своей трагедии «Агамемнон», Эсхил дает детальное описание цепочки сигнальных огней на вершинах гор Ида, Антос. Масисто, Египланто и Аракнея, а также на утесах Лемно и Кифара, для передачи в Арго весть о захвате Трои ахейцами.

В более поздние, но в античные времена, римский император Тиберий, находясь на Капри, использовал световые сигналы для связи с побережьем.

На Капри до сих пор можно видеть руины античного «Фаро» (свет) вблизи виллы императора Тиберия на Тиберио Маунт.

В Северной Америке одна из первых оптических систем связи была установлена около 300 лет назад в колонии Новая Франция (ныне провинция Квебек в Канаде). Региональное правительство, опасаясь возможности нападения английского флота, установило ряд позиций для сигнальных огней во многих деревнях вдоль реки Святого Лаврентия. В этой цепи, которая начиналась с Иль Верте, на расстоянии около 200 км от Квебека ниже по течению, было не менее 13 пунктов. С начала 1700-х гг. в каждой из этих деревень, каждую ночь периода навигации, был караульный, задачей которого было наблюдать за сигналом, посылаемым из деревни ниже по течению, и передавать его далее. С помощью такой системы сообщение о британской атаке в 1759 г. достигло Квебека прежде, чем было слишком поздно.

В 1790 г. французский инженер, Клод Шапп, изобрел семафоры (оптический телеграф), располагаемые на башнях, установленных в пределах видимости одна от другой, что позволяло посылать сообщения от одной башни к другой. В 1880 г. Александр Грэхем Белл (1847-1922) получил патент на «фотофон» устройство, в котором использовался отраженный солнечный свет для передачи звука к приемнику. Отраженный свет модулировался по интенсивности путем колебаний отражающей мембраны, помещенной в конце трубки, в которую Белл говорил. Свет проходил расстояние около 200 м и попадал на селеновую ячейку (фотоприемник), связанную с телефоном. Хотя Белл рассматривал фотофон как наиболее важное свое изобретение, его применение ограничивалось погодными условиями. Однако это обстоятельство не помешало Беллу написать отцу:

«Я услышал разборчивую речь, произведенную солнечным светом!... Можно вообразить, что этому изобретению обеспечено будущее!... Мы сможем разговаривать с помощью света на любом расстоянии в пределах видимости без каких бы то ни было проводов...В условиях войны такую связь нельзя прервать или перехватить».

Изобретение лазера стимулировало возросший интерес к оптической связи. Однако, вскоре было продемонстрировано, что атмосфера Земли нежелательным образом искажает распространение лазерного света. Рассматривались различные системы, такие, как трубки с газовыми линзами и диэлектрические волноводы, но все они были оставлены в конце 1960-х гг., когда были разработаны оптические волокна с малыми потерями.

Понимание, что тонкие стеклянные волокна могут проводить свет за счет полного внутреннего отражения, было старой идеей, известной с XIX в. благодаря английскому физику Джону Тиндалю (1820-1893) и использованной в инструментах и для освещения. Однако в 1960-х гг. даже лучшие стекла обладали большим ослаблением света, пропускаемого через волокно, что сильно ограничивало длину распространения. В то время типичным значением ослабления был один децибел на метр, означающим, что после прохода 1 м пропущенная мощность уменьшается до 80%. Поэтому было возможным лишь распространение по волокну длиной несколько десятков метров, и единственным применением была медицина, например эндоскопы. В 1966 г. Чарльз Као и Джордж Хокхэм из Standard Telecommunications Laboratory (Великобритания) опубликовали фундаментальную работу, в которой показали, что если в плавленом кварце тщательно устранить примеси, а волокно окружить оболочкой с меньшим показателем преломления, то можно добиться уменьшения ослабления до -20 дБ/км. Это означает, что при прохождении длины 1 км мощность пучка ослабляется до одной сотой входной мощности. Хотя это и очень малое значение, оно приемлемо для ряда применений.

Как часто бывает в таких ситуациях, в Великобритании, Японии и США начались интенсивные усилия с целью получить волокна с улучшенными характеристиками. Первый успех был достигнут в 1970 г. Е. П. Капроном, Дональдом Кеком и Робертом Майером их Компании Корнинг Глас. Они изготовили волокна, которые имели потери 20 дБ/км на длине волны 6328 А° (длина волны He-Ne-лазера). В том же году И. Хаяши с сотрудниками сообщили о лазерном диоде, работающем при комнатной температуре.

В 1971 г. И. Джакобс был назначен директором Лаборатории цифровой связи в AT&T Bell Laboratories (Холмдел, Нью-Джерси, США), и ему было поручено разработать системы с высокой скоростью передачи информации. Его начальники У. Даниельсон и Р. Компфнер перевели часть персонала в другую лабораторию, руководимую С. Миллером, чтобы «не спускать глаз» с того, что происходит в области оптических волокон. Тремя годами позднее Даниельсон и Компфнер поручили Джакобсу сформировать исследовательскую группу для изучения практической возможности связи с помощью волокон. Было ясно, что наиболее экономичным, первоначальным применением систем, использующих свет, является связь телефонных станций в крупных городах. Тогда для этого использовались кабели, а информация передавалась в цифровом виде, путем кодирования ее серией импульсов. Волокна, с их способностью передавать огромное количество информации, представлялись идеальной заменой электрических кабелей. Офисы и телефонные станции в больших городах расположены на расстояниях несколько километрах друг от друга, и их уже в то время можно было связать без проблем, даже используя волокна с относительно большими потерями.

Итак, предварительный эксперимент был сделан в середине 1976 г. в Атланте с оптическими волоконными кабелями, помещаемыми в трубы обычных кабелей. Первоначальный успех этих попыток привел к созданию системы, которая связала две телефонные станции в Чикаго. На основе этих первых результатов, осенью 1977 г., в Bell Labs было решено разработать оптическую систему для широкого пользования. В 1983 г. связь была установлена между Вашингтоном и Бостоном, хотя это и было связано с многими трудностями. Эта система связи работала со скоростью передачи 90 Мбит/с. В ней использовалось многомодовое волокно на длине волны 825 нм.

Между тем NTTC (японская телеграфная и телефонная компания) сумела вытягивать волокна с потерями лишь 0,5 дБ/км на длинах волн 1,3 и 1,5 мкм, а Линкольновская лаборатория в MIT продемонстрировала работу InGaAsP лазерного диода, способного непрерывно работать в диапазоне между 1,0 и 1,7 мкм при комнатной температуре. Использование волокон с малыми потерями на 1,3 мкм позволило создать более совершенные системы. Были построены системы с пропусканием 400 Мбит/с в Японии и 560 Мбит/с в Европе. Европейская система могла пропускать одновременно 8000 телефонных каналов. В США было произведено более 3,5 миллионов километров волокна. Единственной частью, которая все еще использует медный провод, является связь между домом и телефонной станцией. Эта «последняя миля», как ее стали называть, также становится объектом волоконной связи.

Первый трансатлантический телеграфный кабель был введен в действие в 1858 г. Почти сто лет спустя, в 1956 г., был проложен первый телефонный кабель, получивший название ТАТ-1. В 1988 г. начало действовать первое поколение трансатлантических кабелей на оптических волокнах (их стали называть ТАТ-8). Они работают на длине волны 1,3 мкм и связывают Европу, Северную Америку и Восточную часть Тихого океана. В 1991 г. началось установление второго поколения волоконно-оптической связи, ТАТ-9, которая работает на 1,3 мкм и связывает США и Канаду с Великобританией, Францией и Испанией. Другая линия работает между США и Канадой и Японией.

В мире имеется ряд других волоконно-оптических линий. Для примера, оптическая подводная линия между Англией и Японией покрывает 27 300 км в Атлантическом океане, Средиземном море, Красном море, Индийском океане, в Тихом океане, и имеет 120 000 промежуточных усилителей на пару волокон. Для сравнения, первый трансатлантический телефонный кабель 1956 г. использовал 36 преобразователей, а первый оптический кабель, проложенный через Атлантический океан, использовал 80 000.

Сегодня, после 30 лет исследований, оптические волокна достигли своих физических пределов. Кварцевые волокна могут пропускать инфракрасные импульсы на длине волны 1,5 мкм с минимальными потерями 5% на километр. Нельзя уменьшить эти потери из-за физических законов распространения света (законы Максвелла) и фундаментальной природы стекла.

Однако имеется одно достижение, которое может радикально улучшить ситуацию. Это возможность непосредственно усиливать оптические сигналы в волокне, т.е. без необходимости сперва извлекать их из волокон. Путем добавления в материал волокна примесей подходящих элементов, например эрбия, и возбуждения их с помощью подходящего света накачки, пропускаемого через само волокно, можно получить инверсную населенность между двумя уровнями эрбия с переходом, который точно соответствует 1,5 мкм. В результате можно получить усиление импульса света на этой длине волны при его распространении через волокно. Кусок такого активного волокна помещается между двумя концами волокон, через которые распространяется сигнал. С помощью оптического ответвителя в этот кусок направляется и излучение накачки. На выходе остаток излучения накачки выходит наружу, а усиленный сигнал продолжает распространение в волокне. С помощью такого подхода можно исключить промежуточные электронные усилители. В старых системах электронных усилителей свет выходил из волокна, регистрировался фотоэлектрическим приемником, сигнал усиливался и преобразовывался в свет, который продолжал распространяться в следующей секции волокна.

Из книги Космоземные связи и НЛО автора Дмитриев Алексей Николаевич

Из книги Физическая химия: конспект лекций автора Березовчук А В

3. Первый закон термодинамики. Калорические коэффициенты. Связь между функциями CP и Cv Формулировки первого закона термодинамики.1. Общий запас энергии в изолированной системе остается постоянным.2. Разные формы энергии переходят друг в друга в строго эквивалентных

Из книги Откровения Николы Теслы автора Тесла Никола

Из книги Тайны пространства и времени автора Комаров Виктор

Из книги Нейтрино - призрачная частица атома автора Азимов Айзек

Глава 4. Связь массы и энергии Несохранение массы Новое представление о строении атома укрепило уверенность физиков в том, что законы сохранения применимы не только к окружающему нас повседневному миру, но и к тому огромному миру, который изучают астрономы. Но

Из книги Астрономия древнего Египта автора Куртик Геннадий Евсеевич

Наблюдения Сириуса и его связь с календарем. Наблюдения Сириуса играли особую роль в истории древнеегипетского календаря. Наиболее ранние свидетельства о них восходят ко времени I династии (начало III тыс. до н. э.). Сохранилась табличка из слоновой кости, датируемая этим

Из книги Эволюция физики автора Эйнштейн Альберт

Оптические спектры Мы уже знаем, что все вещество состоит из частиц, число разновидностей которых невелико. Электроны были теми элементарными частицами вещества, которые были открыты первыми. Но электроны являются также и элементарными квантами отрицательного

Из книги НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. автора Тесла Никола

II - СВЯЗЬ МЕЖДУ НЕПРОНИЦАЕМОСТЬ Ю И ПЛОТНОСТЬ Ю Рентген указывал на то, что непроницаемость тела для лучей тем выше, чем выше его плотность, что подтвердило последующее исследование. Это важное обстоятельство можно убедительно объяснить единственным и никаким иным

Из книги О чем рассказывает свет автора Суворов Сергей Георгиевич

РАЗВИТИЕ НОВОГО ПРИНЦИПА - ЭЛЕКТРИЧЕСКИЙ ОСЦИЛЛЯТОР - ПРОИЗВЕДЕНИЕ КОЛОССАЛЬНЫХ ЭЛЕКТРИЧЕСКИХ ДВИЖЕНИЙ - ЗЕМЛЯ ОТВЕЧАЕТ ЧЕЛОВЕКУ - МЕЖПЛАНЕТНАЯ СВЯЗЬ ТЕПЕРЬ СТАЛА ВОЗМОЖНОЙ Я решил сконцентрировать свои усилия на этой несколько рискованной задаче, хотя и сулившей

Из книги История лазера автора Бертолотти Марио

Электронно-оптические преобразователи света Опишем кратко один из способов преобразования инфракрасного света в видимый, с помощью так называемых электронно-оптических преобразователей.На рис. 43 дана простейшая схема такого преобразователя. Он представляет собой

Из книги Вечный двигатель - прежде и теперь. От утопии - к науке, от науки - к утопии автора Бродянский Виктор Михайлович

Оптические считыватели информации в торговле В настоящее время в каждом супермаркете и в большинстве магазинов используется система чтения универсального кода. Лазерная система читает код, записанный на товарах в виде системы линий (штрих-код). Преимущества этой

Из книги Астероидно-кометная опасность: вчера, сегодня, завтра автора Шустов Борис Михайлович

Из книги Новый ум короля [О компьютерах, мышлении и законах физики] автора Пенроуз Роджер

2.3. Связь и различия между малыми телами Порой в великой книге тайн природы Мне удается кое-что прочесть. У. Шекспир. «Антоний и Клеопатра» Как было отмечено ранее, согласно общепринятой гипотезе, кометы являются остатками протопланетного вещества, не вошедшего в

4 октября 2012 в 15:54

С борта МКС впервые по лазерному каналу была передана широкополосная информация на наземный пункт

  • Беспроводные технологии ,
  • Стандарты связи

2 октября 2012 года с Российского сегмента Международной космической станции впервые по лазерному каналу была передана широкополосная информация на наземный пункт

В рамках космического эксперимента (СЛС) по отработке аппаратуры и демонстрации российской технологии создания космических лазерных систем передачи информации, проводимого ОАО «НПК «СПП» совместно с ОАО «РКК «Энергия», осуществлен сеанс передачи информации с терминала связи, установленного на борту РС МКС, на лазерный терминал наземного пункта станции оптических наблюдений «Архыз» на Северном Кавказе (филиал ОАО «НПК «СПП»).
Была передана информация общим объемом 2,8 Гигабайт со скоростью 125 Мбит/с.
Этот шаг открывает дорогу к широкому внедрению в космическую технику России лазерных линий связи, которые при меньших массогабаритных параметрах бортовой аппаратуры потенциально могут обеспечивать исключительно высокую скорость информационного потока (до десятков гигабит в секунду).

Новости Федерального космического агентства

Интернет на МКС

Хм, подумал я, там же (на МКС) совершенно точно уже есть интернет. Вебкамеры работают, можно дома не телеке смотреть во время ужина. Зачем же нужна лазерная система? Ведь она требует точной наводки, да и погодка у нас тут, на Земле, не всегда радует. Да и когда радует нас, человеков, лазерам-то радости все равно не много. Полез искать.

Интернет таки да, действительно есть на МКС. Им могут пользоваться космонавты, он там на борту даже по вай-фай раздается. Но он там, оказывается, не так давно. Всего с 2010 года . И на диал-апных скоростях . Проблема, говорят, не с плохим линком, а с огромной относительной скоростью движения станции. Данные не успевают. Картинки с котиками прилетают в космос, а космонавтов и след уже простыл.

«Позвонить с борта МКС можно по спутниковому телефону в любую точку Земли. Главное - наличие свободного времени и спутниковой связи. К сожалению не все время есть такая возможность. Также по этому каналу связи (KU-band) мы можем работать с интернетом. Скорость небольшая, но новости просмотреть можно. Для удобства на борту есть еще почтовая программа. Перед стартом мы подаем списки электронных адресов, почту от которых мы будем получать во время полета на специальный адрес NASA. Списки могут быть откорректированы во время миссии. Эту почту нам забрасывают во время так называемой синхронизации, где-то 3-4 раза в день», - отметил Шкаплеров.
www.ria.ru 20/02/2012

Радиосвязь

Неужели все так плохо с радиосвязью?
Информация с «Вояджера» на Землю передает жестко скрепленная с корпусом параболическая антенна диаметром 3,65 метра, которая должна быть сориентирована точно на родную планету. Через нее на частотах 2295 МГц и 8418 МГц шлют сигналы два радиопередатчика мощностью по 23 ватта. Для надежности каждый из них дублирован. Большая часть данных транслируется на Землю со скоростью 160 бит/с - это всего раза в три-четыре быстрее, чем скорость набора текста профессиональной машинисткой и в 300 раз медленнее телефонного модема. Для приема сигнала на Земле используется 34-метровые антенны сети дальней космической связи NASA, но в некоторых случаях задействуются самые большие 70-метровые антенны, и тогда скорость удается поднять до 600 и даже 1400 бит/с. По мере удаления станции ее сигнал слабеет, но еще важнее то, что постепенно снижается мощность радиоизотопных генераторов, которые питают передатчики. Ожидается, что станция сможет передавать научные данные еще по крайней мере 10 лет, после чего связь с ней прекратится.
"Космические радиолинии

Самой высокой скоростью межпланетной передачи данных может сегодня похвастаться аппарат Mars Reconnaissance Orbiter, вышедший на орбиту Марса 10 марта 2006 года. Он оснащен 100-ваттным передатчиком с трехметровой параболической антенной и может передавать информацию на скорости до 6 мегабит в секунду. Доставить к Марсу более крупный и мощный передатчик пока затруднительно.
"Космические радиолинии " («Вокруг света», №10 (2805) | Октябрь 2007)

Лазеры

Единственное отличие лазерного излучения от радиоизлучения - частота. Частота света - ~6*10^14Гц, 1,5мкм лазера - 2*10^14Гц. Радиопередатчики на космических аппаратах работают на частоте в единицы ГГц. Радио Ультра в Москве вещало на 100.5Мгц.
Высокая частота и, соответственно, маленькая длина волны - это и дар и проклятье лазерного излучения. Используя электромагнитное излучение такой частоты для связи, мы получаем в нагрузку и все его болезни - низкую проникающую способность, узконаправленность (это, конечно, может быть и не болезнь, если решается задача сокрытия канала связи) и т.д. Лазерный пучок имеет гауссову форму:

Т.е. чем дальше от земли, тем больше будет площадь лазерного пятна и, соответственно меньшая часть фотонов будет принимать участия в, собственно, передаче информации. Т.е. межзвездным средством связи лазер, даже с учетом отсутствия препятствия к распространению излучения в космосе, все равно не станет. А межпланетным?

Впервые лазерная связь в космосе была осуществлена 21 ноября 2002 года. Европейский спутник дистанционного зондирования Земли SPOT 4, находящийся на орбите высотой 832 километра, установил контакт с экспериментальным космическим аппаратом Artemis, обращающимся на высоте 31 000 километров и передал снимки земной поверхности. А недавно Лаборатория Линкольна в Массачусетсском технологическом институте (MIT) совместно с NASA приступила к разработке лазерной системы дальней космической связи. Первый тестовый коммуникационный лазер планируется отправить к Марсу в 2009 году. Ожидается, что этот 5-ваттный передатчик в период сближения планет обеспечит скорость передачи данных до 30 мегабит в секунду.
"Космические радиолинии " («Вокруг света», №10 (2805) | Октябрь 2007)
Более свежие новости, правда, говорят о тестировании лазерного канала Марс-Земля в 2012 году .

Ту систему, что второго числа совершала обмен данными с Землей с борта МКС, строит ОАО «НПК „СПП“». Совсем чуть-чуть информации о системе (то ли той, что на борту МКС, то ли похожей), можно найти на их сайте . Позволю себе продублировать эту информацию здесь:

Межспутниковые лазерные системы передачи информации со скоростью до 600 Мбит/с и дальностью действия от 1 до 6 тыс. км (линии НКА-НКА) от 30 до 46 тыс. км (линии НКА-ГКА):

Терминал для проведения космических экспериментов по лазерной связи на трассе Борт-Земля для МКС:

Длина трассы - до 2000 км
Масса терминала с транспортной рамой - 80 кг
Энергопотребление - 150 Вт
Скорость передачи данных - до 600 Мбит/с
Длина волны передатчика - 1550 нм
Длина волны маяка - 810 нм
Диаграмма передатчика - 50 угл. сек
Точность наведения - 10 угл. сек

На этом выступление заканчиваю. Простите за большое количество копипаста и ссылок, надеюсь, что информация интересная. И еще, я возмущен: ГЛОНАСС у нас отдельным хабом значится, а вот космонавтика (я так понимаю, это такой хаб-сборная солянка для всего, что к космосу отношение имеет) - хаб-оффтопик. Непорядок, ребят. Я бы местами поменял.

Чёрный властелин 4 января 2015 в 05:04

Вариации на тему космической лазерной связи

  • Космонавтика

Одна из актуальных на сегодняшний день тем в коммерческой космонавтике, и не только - это тема лазерной связи. Преимущества ее известны, тесты проводились и оказались успешны или очень успешны. Если кому плюсы и минусы неизвестны - кратко изложу.

Лазерная связь позволяет передавать данные на гораздо большие относительно радиосвязи расстояния, скорость передачи благодаря высокой концентрации энергии и гораздо более высокой частоте несущей (на порядки) также выше. Энергоэффективность, низкий вес и компактность также в разы или на порядки лучше. Как и стоимость - в принципе, для лазерной связи в космосе вполне может подойти обыкновенная китайская лазерная указка мощностью в районе 1 Вт и выше, что я и намерен доказать ниже.

Из минусов можно упомянуть прежде всего необходимость гораздо более точного наведения приемных и передающих модулей относительно радиосвязи. Ну и известные атмосферные проблемы с облачностью и пылью. На самом деле все эти проблемы легко решаемы, если подойти к их решению с головой.

Прежде всего - рассмотрим, как работает приемный модуль. Он представляет из себя специализированный (не всегда) телескоп, который улавливает излучение лазера и превращает его в электросигналы, которые затем известными методами усиливаются и преобразуются в полезную информацию. Связь, естественно, как и везде сейчас, должна быть цифровой и, соотв., полнодуплексной. Но вот должна быть ли она при этом лазерной в обе стороны? Совершенно не обязательно! Почему это так - нам станет ясно, стоит нам только рассмотреть, как отличаются приемные и передающие устройства для лазерной связи, и как отличаются требования к массогабаритным параметрам устройств связи на орбитальных КА (или КА дальнего космоса) и наземных комплексах.

Как уже сказано ранее - приемный комплекс - это телескоп. С линзами и (или) рефлекторами, системой их крепления и наведения телескопа. А это означает - тяжелая и громоздкая конструкция - что совершенно неприемлемо для КА. Ибо для КА любое устройство должно быть как раз максимально легким и компактным. Что как раз для передатчика ЛИ вполне характерно - все, наверное, уже видели современные ПП лазеры размером и весом с авторучку. Ну правда, питание для настоящего, неигрушечного лазера будет весить поболее, ну так оно и для систем радиоцифровой связи будет весить еще поболее ввиду его гораздо меньшей энергоэффективности.

Что из этого всего следует? Это значит - совершенно не нужно передавать данные в обе стороны лазером, достаточно передавать их только со спутника в оптоканале, а на спутник (КА) - в радиоканале, как и ранее. Конечно, это значит, что придется все-таки использовать направленную параболическую антенну для приема, что для веса КА не есть хорошо. Но при этом следует учитывать, что антенна для приема, как и, собственно, сам ресивер, будет все-таки весить в разы меньше, чем она же для передачи. Ибо мощность наземного передатчика мы можем делать на порядки мощнее, чем на КА, а значит - и антенна не нужна большая. В некоторых же случаях направленная антенная вообще не нужна будет.

Т.о. мы имеем уменьшение веса КА практически в разы, так же как и энергопотребления. Что является прямой дорогой к возможности повсеместно использовать для нужд связи, исследования космоса и др. нужд микроспутников, а значит - резкого удешевления космоса. Но и это еще не все.

Для начала рассмотрим путь решения проблемы наведения луча лазера со спутника на наземный приемник. На первый взгляд - проблема серьезная, а в некоторых случаях - и вовсе нерешаемая (если спутник не на геостационаре). Но вот вопрос - а надо ли луч наводить на приемник?

Есть известная проблема - это расхождение и ослабление луча лазера при прохождении в атмосфере. Особенно проблема обостряется при прохождении луча через слои с разной плотностью. При прохождении границ раздела сред луч света, в т.ч. и лазерный луч, испытывает особенно сильные преломления, рассеивание и ослабление. В этом случае мы можем наблюдать своего рода световое пятно, получающееся как раз при прохождении такой границы раздела сред. В атмосфере Земли таких границ несколько - на высоте около 2 км (активный погодный атмосферный слой), на высоте примерно 10 км, и на высоте примерно 80-100 км, т. е. уже на границе космоса. Высоты слоев даны для средних широт для летнего периода. Для других широт и других времен года высоты и само кол-во границ раздела сред может сильно отличаться от описанного.

Т.о. при вхождении в атмосферу Земли луч лазера, до этого спокойно преодолевший миллионы километров без каких-либо потерь (на разве что небольшую расфокусировку), на каких то несчастных десятках километров теряет львиную долю своей мощности. Однако этот плохой на первый взгляд факт мы отлично можем обратить себе на пользу. Ибо этот факт позволяет нам обойтись без какого либо серьезного наведения луча на приемник. Ибо в качестве такого приемника, точнее первичного приемника, мы как раз и можем использовать саму атмосферу Земли, точнее эти самые границы раздела слоев, сред. Мы просто можем наводить телескоп на получающееся световое пятно и считывать с него информацию. Конечно, это заметно прибавит кол-во помех и снизит скорость передачи данных. И сделает ее вообще невозможной в дневное время по понятным причинам - Солнце же! Зато насколько мы можем удешевить спутник за счет экономии на системе наведения! Это особенно актуально для спутников на нестационарных орбитах, а также для КА для исследований дальнего космоса. Кроме того, учитывая, что лазеры, пусть даже с такой некачественной, не узкой частотной полосой, как китайские лазеры - вполне реально можно отсеивать от помех с помощью светофильтров или узкочастотных фотоприемников.

Не менее актуальным могло бы быть использование лазерной связи не для космоса, а для наземной дальней связи способом, подобным тропосферной связи. Имеется в виду передача данных лазером также с использованием атмосферного рассеяния на границах раздела атмосферных слоев с одной точки поверхности Земли до другой. Дальность такой связи может достигать сотен и тысяч километров, а при использовании релейного принципа - и того более.

Теги: лазерная связь, космос


Радиоволны - не единственное средство связи с внеземными цивилизациями. Есть и другие способы, например световые сигналы. Поскольку световому сигналу придется преодолеть огромное расстояние, он должен обладать необходимыми свойствами: иметь достаточную для преодоления этого пути энергию. Легко убедиться, что для посылки таких световых сигналов оптические прожекторы непригодны. Они создают расходящиеся лучи света. Поэтому чем дальше от прожектора, тем ширина такого пучка становится больше. На огромных расстояниях она также очень большая. Это значит, что энергия, приходящаяся на единицу площади, очень малая.

Если использовать самый современный оптический прожектор, который создает пучок света (луч) шириной всего полградуса, то уже на расстоянии 50 километров световое пятно, создаваемое прожектором, составит 450 метров. Такой прожектор, установленный на Земле, будет создавать на Луне светлое пятно диаметром 3000 километров! Ясно, что при этом световая энергия рассеивается на большой площади и освещенность поверхности становится намного меньше, чем если бы это пятно составляло всего 10 или 100 метров. Образованное земным прожектором на поверхности Луны пятно обнаружить невозможно. Но Луна находится рядом с нами. Что же останется от плотности энергии на удалениях в сотни световых лет? Практически ничего. Поэтому рассматривать далее такой тривиальный источник световых сигналов нет смысла. Но необходимые оптические сигналы могут быть созданы с помощью лазеров, которые явились воплощением идей Алексея Толстого (гиперболоид инженера Гарина) и Г. Уэллса (тепловой луч марсиан).

Что касается лазерного излучения как средства связи с инопланетянами, то здесь важны два его свойства. Первое - возможность излучать практически не расходящийся пучок света (луч), что, как мы видели, нельзя сделать с помощью обычных прожекторов. Второе - возможность создавать мощные световые сигналы, которые способны достигнуть звезд, находящихся на удалениях в сотни и тысячи световых лет.

Важным свойством лазерного излучения является его монохроматичность (буквально «одноцветность»). Физически это означает, что излучение имеет строго неизменную длину волны, а значит, и цвет. В то же время имеются лазеры, которые излучают одну строго определенную длину волны, величина которой определяется «рабочим веществом» лазера. Такое вещество может быть газообразным, жидким или твердым. Вначале использовали главным образом синтетический рубиновый кристалл. При использовании стекла, активированного неодимом, длина волны излучения равна 1,06 мкм. В качестве рабочего вещества применяют, в частности, углекислый газ CO2 и многие другие вещества. Жидкостные лазеры позволяют излучать на разных длинах волн (в данном диапазоне). Излучение происходит попеременно, в каждый момент времени излучается одна строго определенная длина волны.

Важно и то, что лазерные установки позволяют излучать очень короткие импульсы света. Для передачи информации (последовательностями импульсов) это очень важно. Длина импульса может быть столь мала, что за время в одну секунду можно «уложить» до тысячи миллиардов импульсов. При излучении импульсы следуют друг за другом с определенной задержкой. Современные лазеры позволяют получать импульсы большой мощности. Так, даже столь короткие импульсы, как приведенные выше, могут иметь энергиюбольше 10 джо-улей! Чем больше длина импульса, тем больше содержащаяся в нем энергия. В режиме» свободной генерации», когда лазер сам регулирует длину излучаемых импульсов и она составляет порядка тысячной доли секунды, энергия каждого импульса может достигать нескольких тысяч джоулей. Лазеры позволяют излучать не только короткие импульсы света, но и непре-рывно. Например, газовые лазеры, работающие на углекислом газе, могут работать в режиме непрерывной генерации. В этом случае излучение характеризуется не энергией каждо-го импульса (т. к. отдельных импульсов нет), а энергией в единицу времени или, другими словами, мощностью. Так, мощность лазеров, работающих на углекислом газе, доходит до нескольких десятков киловатт.

Излучение лазера также рассеивается, но несравненно меньше, чем у прожекторов. Это определяется размерами рабочего вещества. Излучение с поверхности рабочего вещества происходит строго с одинаковой фазой (синфазно) по всей его поверхности. Поэтому ширина посылаемого лазером пучка зависит от размера блока «рабочего вещества», то есть чем больше поверхность, тем эже пучок излучаемого света. Зависимость ширины пучка от длины волны прямая: чем меньше длина волны, тем шире посылаемый лазером пучок. Но даже у рядовых лазеров, у которых размеры рабочего вещества составляют порядка 1 сантиметра, угол раствора светового пучка в 200 раз меньше, чем у прожектора. Он составляет 10 угловых секунд. Имеются, конечно, лазеры и со значительно меньшими углами светового излучения.

Чтобы избавиться от расхождения лучей, необходимо использовать оптическую систему типа телескопа, направляющую ход лучей. Если пучок лазерного излучения пропустить через линзу, у которой фокусное расстояние равно ее диаметру, то действительное изображение пучка в фокальной плоскости будет иметь размеры, равные длине волны. Далее, в том месте, где получено это действительное изображение пучка, поместим фокус другой линзы (или зеркала), диаметр которой намного больше, чем первой. Для второй линзы фокусное расстояние может быть больше ее диаметра, но может быть и равно ему (как и у первой линзы). Такая комбинация двух линз приводит к тому, что из второй большой линзы (зеркала) будет выходить пучок, у которого угол расхождения уменьшится (по сравнению с первоначальным, входящим в телескоп) во столько раз, во сколько раз диаметр второй линзы (зеркала) больше длины излучаемой волны. Таким образом, вполне реально сколь угодно уменьшить угол расходимости лазерного пучка.

Для связи с инопланетянами могут использоваться как связные системы, построенные на одном лазере, так и построенные на целой системе (батарее) лазеров. Если использовать непрерывно излучающий лазер мощностью 10 киловатт и дополнительное большое зеркало диаметром 5 метров, то можно сузить угол раствора пучка до 0,02 с дуги.

Можно использовать не одно большое зеркало, а определенное количество зеркал с малым диаметром (скажем, 10 сантиметров). Тогда система должна содержать столько же лазеров, сколько имеется зеркал. Вся она должна быть очень жестко ориентирована. Если взять 25 лазеров, то можно достичь угла раствора пучка, равного одной дуговой секунде.

Преимущество лазерных систем (батарей) для космической связи состоит в том, что при ее работе можно исключить влияние земной атмосферы. Если же работать с одним лазером, то из-за неспокойствия атмосферы угол раствора пучка становится значительно больше, чем при отсутствии такого влияния. Это влияние можно обойти, если лазерную систему поместить так, чтобы лазерный луч не проходил через атмосферу, то есть расположить ее на искусственном спутнике-платформе. Применять батарею лазерных установок в этом случае необходимости нет.

Впервые возможность связи с внеземными цивилизациями с помощью лазерного луча была научно проанализирована в 1961 году лауреатом Нобелевской премии Ч.Х. Таун-сом и Р.И. Шварцем. С тех пор лазерная техника в мире усовершенствовалась и условия для осуществления лазерной связи стали более благоприятными. Главное, что должна обеспечить эта техника, это достаточная мощность излучения и возможность отделить лазерное излучение, посланное нам инопланетянами, от излучения звезд. Как отделить свет лазера от света звезды? Этот вопрос отнюдь не простой, и решать его можно только благодаря особому свойству лазерного излучения - его высокой монохроматичности. Звезда (например, Солнце) излучает свет с различными длинами волн. Лазер же излучает только на строго определенной длине волны, скажем 0,5 мкм. На этой длине волны Солнце излучает наибольшую энергию. Тем не менее излучение лазера в 25 раз больше, чем у Солнца или у другой такой же звезды. Конечно, это относится только к данной конкретной длине волны. На других длинах волн (например, в ультрафиолетовой и инфракрасной областях спектра) это отношение было бы еще больше, поскольку на этих длинах волн Солнце излучает меньше, чем около зеленого света (0,5 мкм).

Таким образом, даже современная лазерная техника позволяет создать излучение, интенсивность которого на данной длине волны достаточна для того, чтобы его выделить из всего излучения звезд. Чтобы добиться еще лучшего выделения лазерного излучения, надо «работать» вблизи линий поглощения Солнца (или другой звезды), то есть в том диапазоне, где часть излучения Солнца поглощается и оно меньше мешает выделению лазерного излучения. Если лазер работает на длине волны 0,15 мкм, то его спектральная интенсивность может в десятки тысяч раз превосходить интенсивность солнечного излучения на этой длине волны, поскольку она находится в области поглощения солнечного излучения. Конечно, такая лазерная установка должна быть расположена за пределами земной атмосферы, иначе лазерное излучение будет поглощено атмосферным газом. Таким образом, регистрируя и анализируя свет от удаленных звезд, мы должны иметь в виду, что лазерное излучение, посланное внеземными цивилизациями, может быть обнаружено на фоне этого излучения. Оно проявится как узкая линия. Но для этого необходимо анализировать излучение звезд с помощью высококачественных спектрографов. Можно использовать также очень узкополосные фильтры. Конечно, указанные оптические устройства должны быть очень высококачественными: разрешающая способность спектрографа должна быть 0,03 А, для того чтобы получить 10 %-ную контрастность линии лазера над фоном. Современная оптическая техника позволяет это сделать. Поэтому уже сейчас мы можем на самых сильных телескопах начать вылавливание линий излучения, принадлежащих лазерным устройствам внеземных цивилизаций.

Мы неоднократно обсуждали различные аспекты действия эффекта Доплера на излучение движущегося источника. В данном случае этот эффект также необходимо учитывать, так как за счет движения приемников излучения в направлении самого излучения должно происходить смещение (доплеровский сдвиг) частоты излучения в ту или иную сторону. Чтобы регистрировать это излучение со смещенной частотой, надо располагать спектрографами с соответствующей разрешающей способностью.

Таким образом, даже современный уровень лазерной техники позволяет принимать лазерные сигналы от ближайших звезд и посылать их обратно. Но остается еще один, возможно самый главный, вопрос: куда посылать сигналы и откуда их принимать? В том и другом случае мы должны куда-то направлять наши телескопы, причем с очень большой точностью. То же самое требуется и от наших корреспондентов в космосе. Если они находятся на ближайших звездах (их планетах), то земную орбиту они будут наблюдать под углом в одну угловую секунду. Для того чтобы их лазерный луч попал на Землю, они должны направить его с угловым разрешением 0,02 секунды дуги. Нашим астрономам сейчас такая точность доступна. Поэтому мы полагаем, что она достижима и для внеземных цивилизаций, ищущих связи с нами.

Логично представить себе, что инопланетяне в поисках связи с нами будут «шарить» лазерным лучом в пределах Солнечной системы. Если они сделают ширину лазерного луча (пучка) больше, то при этом он будет все время освещать Землю и может относительно легко регистрироваться. Но чем шире луч, тем больше необходимо излучать энергии, чтобы ее хватило на всю освещаемую им поверхность, для того чтобы она могла быть зарегистрирована. Но можно думать, что эта трудность для инопланетян не будет неразрешимой. По крайней мере, в земных лабораториях увеличение мощности лазерного излучения происходит очень быстро.

Особенно эффективно лазерная связь может использоваться в пределах Солнечной системы. С помощью лазерного луча можно создать пятно на Марсе диаметром 5–7 километров, которое будет светиться примерно в 10 раз ярче, чем Венера при наблюдении с Земли. Лазерный луч может нести на себе любую информацию: его интенсивность можно изменять во времени по любому закону (другими словами, лазерное излучение можно модулировать соответствующим образом). Поверхность Луны была освещена лазерным лучом. На не освещенной Солнцем стороне Луны получается светящееся пятно диаметром 40 метров. Оно освещено в 100 раз меньше, чем в случае прямого падения солнечных лучей.

Е. Н. Чепусов, С. Г. Шаронин

Сегодня невозможно представить себе нашу жизнь без компьютеров и сетей на их основе. Человечество стоит на пороге нового мира, в котором будет создано единое информационное пространство. В этом мире осуществлению коммуникаций больше не будут препятствовать ни физические границы, ни время, ни расстояния.

Сейчас во всем мире существует огромное количество сетей, выполняющих различные функции и решающих множество разнообразных задач. Раньше или позже, но всегда наступает момент, когда пропускная способность сети бывает исчерпана и требуется проложить новые линии связи. Внутри здания это сделать относительно легко, но уже при соединении двух соседних зданий начинаются сложности. Требуются специальные разрешения, согласования, лицензии на проведение работ, а также выполнение целого ряда сложных технических требований и удовлетворение немалых финансовых запросов организаций, распоряжающихся землей или канализацией. Как правило, сразу же выясняется, что самый короткий путь между двумя зданиями - это не прямая. И совсем необязательно, что длина этого пути будет сопоставима с расстоянием между этими зданиями.

Конечно, всем известно беспроводное решение на основе различного радиооборудования (радиомодемов, малоканальных радиорелейных линий, микроволновых цифровых передатчиков). Но количество сложностей не уменьшается. Эфир перенасыщен и получить разрешение на использование радиооборудования весьма непросто, а иногда - даже невозможно. Да и пропускная способность этого оборудования существенно зависит от его стоимости.

Мы предлагаем воспользоваться новым экономичным видом беспроводной связи, который возник совсем недавно, - лазерной связью. Наибольшее развитие эта технология получила в США, где и была разработана. Лазерная связь обеспечивает экономичное решение проблемы надежной и высокоскоростной ближней связи (1,2 км), которая может возникнуть при объединении телекоммуникационных систем разных зданий. Ее использование позволит осуществить интеграцию локальных сетей с глобальными, интеграцию удаленных друг от друга локальных сетей, а также обеспечить нужды цифровой телефонии. Лазерная связь поддерживает все необходимые для этих целей интерфейсы - от RS-232 до АТМ.

Как осуществляется лазерная связь?

Лазерная связь в отличие от GSM связи позволяет осуществлять соединения типа "точка-точка" со скоростью передачи информации до 155 Мбит/с. В компьютерных и телефонных сетях лазерная связь обеспечивает обмен информацией в режиме полного дуплекса. Для приложений, не требующих высокой скорости передачи (например, для передачи видеосигнала и сигналов управления в системах технологического и охранного телевидения), имеется специальное экономичное решение с полудуплексным обменом. Когда требуется объединить не только компьютерные, но и телефонные сети, могут применяться модели лазерных устройств со встроенным мультиплексором для одновременной передачи трафика ЛВС и цифровых групповых потоков телефонии (Е1/ИКМ30).

Лазерные устройства могут осуществлять передачу любого сетевого потока, который доставляется им при помощи оптоволокна или медного кабеля в прямом и обратном направлениях. Передатчик преобразует электрические сигналы в модулированное излучение лазера в инфракрасном диапазоне с длиной волны 820 нм и мощностью до 40 мВт. В качестве среды распространения лазерная связь использует атмосферу. Затем лазерный луч попадает в приемник, имеющий максимальную чувствительность в диапазоне длины волны излучения. Приемник производит преобразование излучения лазера в сигналы используемого электрического или оптического интерфейса. Так осуществляется связь с помощью лазерных систем.

Семейства, модели и их особенности

В этом разделе мы хотим представить Вам три семейства наиболее популярных в США лазерных систем - LOO, OmniBeam 2000 и OmniBeam 4000 (таблица 1). Семейство LOO является базовым и позволяет осуществлять передачу данных и голосовых сообщений на расстояние до 1000 м. Семейство OmniBeam 2000 имеет аналогичные возможности, но действует на большее расстояние (до 1200 м) и может передавать видеоизображения и комбинацию данных и речи. Семейство OmniBeam 4000 может осуществлять высокоскоростную передачу данных: от 34 до 52 Мбит/с на расстояние до 1200 м и от 100 до 155 Мбит/с - до 1000 м. На рынке представлены и другие семейства лазерных систем, но они либо покрывают меньшее расстояние, либо поддерживают меньшее количество протоколов.

Таблица 1.

Семейство

Ethernet (10 Мбит/с)

Token Ring (416 Мбит/с)

E1 (2 Мбит/с)

Видеоизображение

Комбинация данных и речи

Высокоскоростная передача данных (34-155 Мбит/с)

Возможность модернизации

Каждое из семейств включает в себя набор моделей, поддерживающих различные коммуникационные протоколы (таблица 2). В семейство LOO входят экономичные модели, которые обеспечивают передачу на расстояние до 200 м (буква "S" в конце наименования).

Таблица 2.

Несомненным достоинством лазерных устройств связи является их совместимость с большинством телекоммуникационного оборудования различного назначения (концентраторов, маршрутизаторов, повторителей, мостов, мультиплексоров и АТС).

Установка лазерных систем

Немаловажным этапом создания системы является ее инсталляция. Собственно включение занимает ничтожно малое время по сравнению с монтажом и настройкой лазерного оборудования, которые продолжаются несколько часов при условии их выполнения хорошо обученными и оснащенными специалистами. При этом от качества выполнения этих операций будет зависеть и качество работы самой системы. Поэтому перед представлением типовых вариантов включения мы хотели бы уделить некоторое внимание этим вопросам.

При наружном размещении приемопередатчики могут устанавливаться на поверхности крыш или стен. Лазер монтируется на специальной жесткой опоре, обычно металлической которая крепится к стене здания. Опора также обеспечивает возможность регулировки угла наклона и азимута луча.

В этом случае для удобства монтажа и обслуживания системы ее подключение осуществляется через распределительные коробки (РК). В качестве соединительных кабелей обычно используют оптоволокно для цепей передачи данных и медный кабель для цепей питания и контроля. Если оборудование не имеет оптического интерфейса данных, то возможно использование модели с электрическим интерфейсом или внешнего оптического модема.

Блок питания (БП) приемопередатчика всегда устанавливается внутри помещения и может крепиться на стене или в стойке, которая используется для оборудования ЛВС или кросса структурированных кабельных систем. Рядом может быть установлен и монитор состояний, который служит для дистанционного контроля функционирования приемопередатчиков семейств ОВ2000 и ОВ4000. Его использование позволяет осуществлять диагностику лазерного канала, индикацию величины сигнала, а также закольцовывание сигнала для его проверки.

При внутреннем монтаже лазерных приемопередатчиков необходимо помнить о том, что мощность лазерного излучения падает при прохождении через стекло (не менее 4% на каждом стекле). Другая проблема - капли воды, стекающие по внешней стороне стекла во время дождя. Они играют роль линз и могут привести к рассеиванию луча. Чтобы уменьшить этот эффект, рекомендуется устанавливать оборудование вблизи верхней части стекла.

Для обеспечения качественной связи необходимо учесть некоторые основные требования.

Самым главным из них, без выполнения которого связь будет невозможна, является то, что здания должны находится в пределах прямой видимости, при этом не должно быть непрозрачных препятствий на пути распространения луча. Кроме того, поскольку лазерный луч в области приемника имеет диаметр 2 м, необходимо, чтобы приемопередатчики находились над пешеходами и потоком транспорта на высоте не ниже 5 м. Это связано с обеспечением правил безопасности. Транспорт также является источником газов и пыли, которые влияют на надежность и качество передачи. Луч не должен распространяться в непосредственной близости от линий электропередач или пересекать их. Необходимо учесть возможный рост деревьев, движения их крон при порывах ветра, а также влияние атмосферных осадков и возможные сбои в работе из-за пролетающих птиц.

Правильный выбор приемопередатчика гарантирует устойчивую работу канала во всем диапазоне климатических условий России. Например, при большом диаметре луча уменьшается вероятность сбоев, связанных с атмосферными осадками.

Лазерное оборудование не является источником электромагнитного излучения (ЭМИ). Однако если разместить его вблизи приборов с ЭМИ, то электронное оборудование лазера будет улавливать это излучение, что может вызвать изменение сигнала как в приемнике, так и в передатчике. Это повлияет на качество связи, поэтому не рекомендуется размещать лазерное оборудование вблизи таких источников ЭМИ, как мощные радиостанции, антенны и т.п.

При установке лазера желательно избегать ориентации лазерных приемопередатчиков в направлении восток-запад, так как несколько дней в году солнечные лучи могут на несколько минут перекрыть лазерное излучение, и передача станет невозможной, даже при наличии специальных оптических фильтров в приемнике. Зная, как движется солнце по небосклону в конкретном районе, можно легко решить эту проблему.

Вибрация может вызвать сдвиг лазерного приемопередатчика. Во избежание этого не рекомендуется устанавливать лазерные системы вблизи моторов, компрессоров и т.п.

Рисунок 1. Размещение и подключение лазерных приемопередатчиков.

Несколько типовых способов включения

Лазерная связь поможет решить проблему ближней связи при соединении типа "точка-точка". В качестве примеров рассмотрим несколько типовых вариантов или способов включения. Итак, у вас есть центральный офис (ЦО) и филиал (Ф), в каждом из которых функционирует компьютерная сеть.

На рисунке 2 представлен вариант организации канала связи для случая, в котором требуется объединить Ф и ЦО, использующие в качестве сетевого протокола Ethernet, а в качестве физической среды - коаксиальный кабель (толстый или тонкий). В ЦО находится сервер ЛВС, а в Ф - компьютеры, которые требуется подключить к этому серверу. С помощью лазерных систем, например моделей LOO-28/LOO-28S или ОВ2000Е, вы легко решите эту проблему. Мост устанавливается в ЦО, а повторитель в Ф. Если мост или повторитель имеет оптический интерфейс, то оптический минимодем не потребуется. Лазерные приемопередатчики подключаются посредством сдвоенного оптоволокна. Модель LOO-28S позволит вам осуществлять связь на расстоянии до 213 м, а LOO-28 - до 1000 м при угле "уверенного" приема 3 мрад. Модель ОВ2000Е покрывает расстояние до 1200 м при угле "уверенного" приема 5 мрад. Все эти модели работают в режиме полного дуплекса и обеспечивают скорость передачи 10 Мбит/с.

Рисунок 2. Подключение удаленного сегмента ЛВС Ethernet на основе коаксиального кабеля.

Подобный же вариант объединения двух сетей Ethernet, использующих в качестве физической среды витую пару (10BaseT) приведен на рисунке 3. Его отличие заключается в том, что вместо моста и повторителя используются концентраторы (хабы), имеющие необходимое число разъемов 10BaseT и один интерфейс AUI или FOIRL для подключения лазерных приемопередатчиков. В этом случае необходимо установить лазерный приемопередатчик LOO-38 или LOO-38S, который обеспечивает требуемую скорость передачи в режиме полного дуплекса. Модель LOO-38 может поддерживать связь на расстоянии до 1000 м, а модель LOO-38S - до 213 м.

Рисунок 3. Подключение удаленного сегмента ЛВС Ethernet на основе витой пары.

На рисунке 4 представлен вариант комбинированной передачи данных между двумя ЛВС (Ethernet) и группового цифрового потока E1 (ИКМ30) между двумя УАТС (в ЦО и Ф). Для решения этой проблемы подходит модель ОВ2846, которая обеспечивает передачу данных и речи со скоростью 12 (10+2) Мбит/с на расстояние до 1200 м. ЛВС подключается к приемопередатчику при помощи сдвоенного оптоволокна через стандартный SMA-разъем, а телефонный трафик передается посредством коаксиального кабеля 75 Ом через BNC-разъем. Необходимо отметить тот факт, что мультиплексирование потоков данных и речи не требует дополнительного оборудования и выполняется приемопередатчиками без снижения пропускной способности каждого из них в отдельности.

Рисунок 4. Объединение вычислительных и телефонных сетей.

Вариант осуществления высокоскоростной передачи данных между двумя ЛВС (LAN "A" в ЦО и LAN "B" в Ф) с использованием коммутаторов АТМ и лазерных приемопередатчиков представлен на рисунке 5. Модель ОВ4000 позволит решить проблему высокоскоростной ближней связи оптимальным образом. Вы получите возможность передавать потоки Е3, ОС1, SONET1 и ATM52 с требуемыми скоростями на расстояние до 1200 м, а потоки 100 Base-VG или VG ANYLAN (802.12), 100 Base-FX или Fast Ethernet (802.3), FDDI, TAXI 100/140, OC3, SONET3 и ATM155 с требуемыми скоростями - на расстояние до 1000 м. Передаваемые данные доставляются на лазерный приемопередатчик при помощи стандартного сдвоенного оптоволокна, подключаемого через SMA-разъем.

Рисунок 5. Объединение высокоскоростных телекоммуникационных сетей.

Приведенные примеры не исчерпывают всех возможных вариантов применения лазерного оборудования.

Что выгодней?

Попробуем определить место лазерной связи среди остальных проводных и беспроводных решений, кратко оценив их достоинства и недостатки (таблица 3).

Таблица 3.

Ориентировочная стоимость

Медный кабель

Оптоволокно

Радиоканал

Лазерный канал

от 3 до 7 тыс. дол. за 1 км

до 10 тыс. дол. за 1 км

от 7 до 100 тыс. дол. за комплект

12-22 тыс. дол. за комплект

Время на подготовку и выполнение монтажа

Подготовка работ и прокладка - до 1 месяца; установка HDSL-модемов - несколько часов



Просмотров