Эффективность работы солнечных панелей разных типов и способы ее повышения. Кпд солнечных батарей

Дата добавления: 30.04.2015

В наше время возобновляемая энергетика, особенно где используется солнечная энергия, развивается очень интенсивно. В связи с этим продолжается активный поиск способов и устройств, повышение продуктивности существующих систем, позволяющих максимально эффективно преобразовать энергию солнца в электричество. Тут можно выделить два направления - прямое преобразование солнечного излучения в электрический ток, и многократное преобразование солнечной энергии - в тепло, далее в механическую работу, а потом в электричество. Пока во втором направлении достигнуты более высокие результаты - промышленные гелиоустановки с концентраторами, турбинами или двигателями Стирлинга показывают отличную продуктивность преобразования солнечной энергии. Так, на эксплуатирующейся в в Нью-Мексико гелиостанции с солнечными концентраторами и двигателями Стирлинга получен КПД на выходе, с учетом расходов энергии на систему ориентации и прочее - 31,25 %.

Но подобные гелиоустановки чрезвычайно сложные и дорогие, эффективны в условиях очень высокой солнечной инсоляции и пока достаточного развития в мире не получили. Поэтому прямые преобразователи солнечного излучения - солнечные батареи , занимают лидирующее положение в мире солнечной энергетики по инсталляциям и спектру применения. Продуктивность серийных промышленных солнечных панелей на сегодняшнее время, в зависимости от технологии, находится в диапазоне от 7 до 20%. Технологии не стоят на месте, развиваются и совершенствуются, уже разрабатываются и тестируются новые ячейки, по крайней мере, вдвое продуктивнее существующих. Попробуем вкратце рассмотреть основные направления развития фотоэлектрических панелей, технологий и их продуктивности.

Подавляющее большинство ячеек солнечных преобразователей современных серийных фотомодулей изготавливается из монокристаллического (C-Si), или поликристаллического (МС-Si) кремния. На сегодняшний день такие кремниевые фотоэлектрические модули занимают около 90% рынка фотоэлектрических преобразователей, из которых примерно 2/3 приходится на поликристаллический кремний и 1/3 — на монокристаллический. Далее идут солнечные модули, фотоэлементы которых изготовлены по тонкопленочной технологии - методом осаждения, или напыления фоточувствительных веществ на различные подложки. Существенное преимущество модулей из этих элементов - более низкая стоимость продукции, ведь для их требуется примерно в 100 раз меньше материала по сравнению с кремниевыми пластинами. И пока что меньше всего представлены многопереходные солнечные элементы из так называемых тандемных, или многопереходных ячеек (multijunction cells).

Доли рынка фотоэлектрических панелей различных технологий:

Кремниевые кристаллические фотомодули .

КПД ячеек кремниевых модулей на сегодня порядка 15 - 20% (поликристаллы - монокристаллы). Этот показатель в целом скоро может быть увеличен на несколько процентов. Например, компания SunTech Power, один из крупнейших мировых производителей модулей из кристаллического кремния, заявила о своем намерении в течении ближайшей пары лет выпустить на рынок фотомодули с КПД 22%. Существующие же лабораторные образцы монокристаллических ячеек показывают производительность 25%, поликристаллических - 20,5%. Теоретический максимальный КПД у кремниевых однопереходных (p-n) элементов - 33,7%. Пока он не достигнут, и основная задача производителей, кроме увеличения эффективности ячеек - усовершенствование технологии производства, удешевление фотомодулей.

Отдельно позиционируются фотомодули компании Sanyo, произведенные по технологии HIT (Heterojunction with Intrinsic Thin layer) с использованием нескольких слоев кремния, аналогично тандемным многослойным ячейкам. КПД таких элементов из монокристаллического C-Si и нескольких слоев нано кристаллического nc-Si - 23%. Это самый высокий на сегодня показатель КПД ячеек серийных кристаллических модулей, своего рода нано солнечные батареи.

Тонкопленочные солнечные батареи эффективность.

Под этим названием подразумевается несколько различных технологий, о производительности которых вкратце расскажем. В настоящее время существует три основных типа неорганических пленочных солнечных элементов - кремниевые пленки на основе аморфного кремния (a-Si), пленки на основе теллурида кадмия (CdTe) и пленки селенида меди-индия-галлия (CuInGaSe2, или CIGS). КПД современных тонкопленочных солнечных батарей на основе аморфного кремния около 10%, фотомодулей на основе теллурида кадмия - 10-11% (компания First Solar), на основе селенида меди-индия-галлия - 12-13% (японские солнечные модули SOLAR FRONTIER). Показатели эффективности пред серийных элементов: CdTe имеют КПД 15.7% (модули MiaSole), а CIGS элементов 18,7% (ЕМРА). КПД отдельных тонкопленочных солнечных батарей значительно выше, например, данные по производительности лабораторных образцов элементов из аморфного кремния - 12,2% (компания United Solar), CdTe элементов - 17,3% (First Solar), CIGS элементов - 20,5% (ZSW). Пока солнечные преобразователи на основе тонких пленок аморфного кремния лидируют по объемам производства среди других тонкопленочных технологий - объем мирового рынка тонкопленочных Si элементов около 80%, солнечных ячеек на основе теллурида кадмия - около 18% рынка, и селенид меди-индия-галлия - 2% рынка. Это связано, в первую очередь, со стоимостью и доступностью сырья, а так же более высокой стабильностью характеристик, чем в многослойных структурах. Ведь кремний - один из самых распространенных элементов в земной коре, индий же (элементы CIGS) и теллур (элементы CdTe) рассеяны и добываются в малом количестве. Кроме того, кадмий (элементы CdTe) токсичен, хотя все производители таких солнечных модулей гарантируют полную утилизацию своей продукции. Так же процесс деградации в элементах тонкопленочных модулей протекает быстрее кристаллических ячеек. Дальнейшее развитие фотоэлектрических преобразователей на основе неорганических тонких пленок связано с усовершенствованием технологии производства и стабилизации их параметров.

К тонкопленочным солнечным батареям относятся также органические/полимерные тонкопленочные светочувствительные элементы и сенсибилизированные красители. В этом направлении коммерческое применение солнечных элементов пока ограничено, все находится в лабораторной стадии, а так же в совершенствовании технологии будущего серийного производства. Ряд источников заявил о достижении КПД элементов на органических преобразователях больше 10%: немецкая компания Heliatek -10,7%, университета Калифорнии UCLA - 10,6%. Группа ученых из лаборатории в EPFL получила КПД 12,3% ячеек из сенсибилизированных красителей. Вообще направление органических тонкопленочных элементов, а так же светочувствительных красителей считается одним из перспективных. Регулярно делаются заявления о достижении очередного рекорда эффективности, выходе технологий за стены лабораторий, покрытии в скором времени всех доступных поверхностей высокоэффективными и дешевыми солнечными преобразователями - компании Konarka, Dyesol, Solarmer Energy. Работы сосредоточены над повышением стабильности характеристик, удешевлением технологий.

Многопереходные (многослойные, тандемные) солнечные панели характеристики.

Ячейки из таких элементов содержат слои различных материалов, образовывающие несколько p-n переходов. Идеальный солнечный элемент в теории должен иметь сотни различных слоев (p-n переходов), каждый из которых настроен на небольшой диапазон длин волн света во всем спектре, от ультрафиолетового до инфракрасного. Каждый переход поглощает солнечное излучение с определенной длиной волны, таким образом, охватывая весь спектр. Основным материалом для таких элементов являются соединения галлия (Ga) - фосфид индия галлия, арсенид галлия, и др.

Одним из частных решений преобразования всего солнечного спектра является применение призм, разлагающих солнечный свет на спектры, концентрирующиеся на однопереходных элементах с различным диапазоном преобразования излучения. Не смотря на то, что исследования в области многопереходных солнечных элементов продолжаются уже два десятилетия, и фотомодули из таких ячеек успешно работают в космосе (солнечные батареи станции «Мир», марсоходов «Mars Exploration Rover» и др.), их практическое земное использование начато сравнительно недавно. Первые коммерческие продукты на таких элементах вышли на рынок несколько лет назад и показали отличный результат, а исследования в этом направлении постоянно приковывают к себе внимание. Дело в том, что теоретический КПД двухслойных ячеек может составить 42% эффективности, трехслойных ячеек 49%, а ячеек с бесконечным количеством слоев - 68% не фокусированного солнечного света. Предел продуктивности ячеек с бесконечным количеством слоев составляет 86,8% при применении концентрированного солнечного излучения. На сегодня практические результаты КПД для многопереходных ячеек составляют порядка 30% при не сфокусированном солнечном свете. Этого недостаточно, чтобы компенсировать затраты на производство таких ячеек - стоимость многопереходной ячейки примерно в 100 раз выше аналогичной по площади кремниевой, поэтому в конструкциях модулей из многопереходных ячеек применяются концентраторы для фокусировки света в 500 - 1000 раз. Концентратор в виде линзы Френеля и параболического зеркала собирает солнечный свет с площади, в 1000 раз превышающей площадь ячейки. Полная стоимость фотомодулей из многопереходных ячеек с применением концентраторов (СРV) значительно удешевляется за счет недорогих линз и подложек, компенсируя высокую стоимость производства самой ячейки. При этом производительность ячеек возрастает до 40%.


Солнечные батареи характеристики. Например, КПД ячеек компании SolFocus размером 5,5 мм х 5,5 мм составляет 40% при применении концентраторов; а средние размеры ячеек в СРV системах имеют размеры в диапазоне от 5,5 мм х 5,5 мм до 1 см х 1 см. При чем для производства 1см? ячеек необходима 1/1000 сырья в сравнении с ячейкой аналогичной продуктивности из кристаллического кремния. Чтобы многопереходные ячейки работали с максимальной эффективностью, необходима постоянная высокая интенсивность солнечного излучения, для этого применяются двухосевые системы ориентации СРV систем. Местами развертывания солнечных ферм на базе модулей из многопереходных ячеек с концентраторами являются регионы с высокой солнечной инсоляцией.

Максимальный КПД многопереходных ячеек, полученный в лабораторных условиях c применением концентраторов, составляет на сегодня 43,5% (Solar Junction), и по прогнозам, будет увеличен в ближайших пару лет до 50%.

Как видим, на сегодня существуют солнечные ячейки с высокой продуктивностью, изготавливаемые по различным технологиям, и основная задача производителей - удешевление конечного продукта, адаптация лабораторных исследований для массового производства. Не смотря на малый расход сырья в тонкопленочных солнечных элементах, стоимость некоторых компонентов в разных видах довольно высокая, так же, как энергоемки сами технологии производства. Остается под вопросом долговременная стабильность параметров. Пока еще очень дорогими являются многопереходные солнечные ячейки, для максимальной эффективной работы которых к тому же необходима повышенная концентрация солнечного излучения. Поэтому кристаллические кремниевые элементы в ближайшее время будут удерживать лидирующие позиции на рынке фотоэлектрических преобразователей, снижаясь в цене. Потеснят их только эффективные и дешевые тонкопленочные модули, возможно, из полимерных полупроводников, или светочувствительных красителей. Но прогнозы в развитии той, или иной технологии - дело не благодарное. Поживем - увидим.

Сейчас вы узнаете то, о чем никогда не расскажут продавцы солнечных панелей.

Ровно год назад, в октябре 2015 года, в качестве эксперимента я решил записаться в ряды «зеленых», спасающих нашу планету от преждевременной гибели, и приобрел солнечные панели максимальной мощностью 200 ватт и грид-инвертор рассчитанный максимум на 300 (500) ватт вырабатываемой мощности. На фотографии вы можете увидеть структуру поликристаллической 200-ваттной панели, но через пару дней после покупки стало ясно, что в одиночной конфигурации у неё слишком низкое напряжение, недостаточное для правильной работы моего грид-инвертора.

Поэтому мне пришлось её поменять на две 100-ваттных монокристаллических панели. Теоретически они должны быть немного эффективнее, по факту же они просто дороже. Это панели высокого качества, российского бренда Sunways. За две панели я заплатил 14 800 рублей.

Вторая статья расходов - грид-инвертор китайского производства. Производитель никак себя не обозначил, но устройство сделано качественно, а вскрытие показало, что внутренние компоненты рассчитаны на мощность до 500 ватт (вместо 300, написанных на корпусе). Стоит такой грид всего 5 000 рублей. Грид - это гениальное устройство. С одной стороны к нему подключается + и - от солнечных панелей, а с другой стороны он с помощью обычной электрической вилки подключается совершенно в любую электрическую розетку в вашем доме. В процессе работы грид подстраивается под частоту в сети и начинает "выкачивать" переменный ток (сконвертированный из постоянного) в вашу домашную сеть 220 вольт.

Грид работает только при наличии напряжения в сети и его нельзя рассматривать как резервный источник питания. Это его единственный минус. А колоссальным плюсом грид инвертора является то, что вам в принципе не нужны аккумуляторы. Ведь именно аккумуляторы являются самым слабым звеном в альтернативной энергетике. Если та же солнечная панель гарантированно отработает более 25 лет (то есть через 25 лет она потеряет примерно 20% своей производительности), то срок службы обыкновенного свинцового аккумулятора в аналогичных условиях составит 3-4 года. Гелевые и AGM аккумуляторы прослужат дольше, до 10 лет, но они и стоят в 5 раз дороже обычных аккумуляторов.

Поскольку у меня есть сетевое электричество, то мне никакие аккумуляторы не нужны. Если же делать систему автономной, то нужно добавить к бюджету еще 15-20 тысяч рублей на аккумулятор и контроллер к нему.

Теперь, что касается выработки электроэнергии. Вся энергия вырабатываемая солнечными панелями в реальном времени попадает в сеть. Если в доме есть потребители этой энергии, то она вся будет израсходована, а счетчик на вводе в дом «крутиться» не будет. Если же моментальная выработка электроэнергии превысит потребляемую в данный момент, то вся энергия будет передана обратно в сеть. То есть счетчик будет «крутиться» в обратную сторону. Но тут есть нюансы.

Во-первых, многие современные электронные счетчики считают проходящий через них ток без учета его направления (то есть вы будете платить за отдаваемую обратно в сеть электроэнергию). А во-вторых, российское законодательство не разрешает частным лицам продавать электроэнергию. Такое разрешено в Европе и именно поэтому там каждый второй дом обвешан солнечными панелями, что в совокупности с высокими сетевыми тарифами позволяет действительно экономить.

Что делать в России? Не ставить солнечные панели, которые могут выработать энергии больше, чем текущее дневное энергопотребление в доме. Именно по этой причине у меня всего две панели суммарной мощностью 200 ватт, которые с учетом потерь инвертора могут отдать в сеть примерно 160-170 ватт. А мой дом стабильно круглосуточно потребляет примерно 130-150 ватт в час. То есть вся выработанная солнечными панелями энергия будет гарантированно потреблена внутри дома.

Для контроля вырабатываемой и потребляемой энергии я пользуюсь Smappee. Я уже писал про него в прошлом году. У него два трансформатора тока, которые позволяют вести учет как сетевой, так и вырабатываемой солнечными панелями электроэнергии.

Начнём с теории, и перейдем к практике.

В интернете есть много калькуляторов солнечных электростанций. Из моих исходных данных согласно калькулятору следует, что среднегодовая выработка электроэнергии моих солнечных панелей составит 0,66 квтч/сутки, а суммарная выработка за год - 239,9 квтч.

Это данные для идеальных погодных условий и без учета потерь на конвертацию постоянного тока в переменный (вы же не собираетесь переделывать электроснабжение своего домохозяйства на постоянное напряжение?). В реальности полученную цифру можно смело делить на два.

Сравниваем с реальными данными по выработке за год:

2015 год - 5,84 квтч
Октябрь - 2,96 квтч (с 10 октября)
Ноябрь - 1,5 квтч
Декабрь - 1,38 квтч
2016 год - 111,7 квтч
Январь - 0,75 квтч
Февраль - 5,28 квтч
Март - 8,61 квтч
Апрель - 14 квтч
Май - 19,74 квтч
Июнь - 19,4 квтч
Июль - 17,1 квтч
Август - 17,53 квтч
Сентябрь - 7,52 квтч
Октябрь - 1,81 квтч (до 10 октября)

Всего: 117,5 квтч

Вот график выработки и потребления электроэнергии в загородном доме за последние 6 месяцев (апрель-октябрь 2016 года). Именно за апрель-август солнечными панелями была выработана львиная доля (более 70%) электрической энергии. В остальные месяцы года выработка была невозможна по большей части из-за облачности и снега. Ну и не забываем, что КПД грида по конвертации постоянного тока в переменный примерно 60-65%.

Солнечные панели установлены практически в идеальных условиях. Направление строго на юг, поблизости нет высоких домов отбрасывающих тень, угол установки относительно горизонта - ровно 45 градусов. Этот угол даст максимальную среднегодовую выработку электроэнергии. Конечно можно было купить поворотный механизм с электроприводом и функцией слежения за солнцем, но это бы увеличило бюджет всей установки практически в 2 раза, тем самым отодвинув срок её окупаемости в бесконечность.

По выработке солнечной энергии в солнечные дни у меня нет никаких вопросов. Она полностью соответствует расчетным. И даже снижение выработки зимой, когда солнце не поднимается высоко над горизонтом не было бы настолько критично, если бы не... облачность. Именно облачность является главным врагом фотовольтаики. Вот вам почасовая выработка за два дня: 5 и 6 октября 2016 года. Пятого октября светило солнце, а 6 октября небо затянули свинцовые тучи. Солнце, ау! Ты где спряталось?

Зимой есть еще одна небольшая проблема - снег. Решить её можно только одним способом, установить панели практически вертикально. Либо каждый день вручную очищать их от снега. Но снег это ерунда, главное чтобы светило солнце. Пусть даже низко над горизонтом.

Итак, подсчитаем расходы:

Грид инвертор (300-500 ватт) - 5 000 рублей
Монокристаллическая солнечная панель (Grade A - высшего качества) 2 шт по 100 ватт - 14 800 рублей
Провода для подключения солнечных панелей (сечением 6 мм2) - 700 рублей
Итого: 20 500 рублей.
За прошедший отчетный период было выработано 117,5 квтч, по текущему дневному тарифу (5,53 руб/квтч) это составит 650 рублей.
Если предположить, что стоимость сетевых тарифов не изменится (на самом деле они изменяются в большую сторону 2 раза в год), то свои вложения в альтернативную энергетику я смогу вернуть только через 32 года!

А уж если добавить аккумуляторы, то вся эта система никогда себя не окупит. Поэтому солнечная энергетика при наличии сетевого электричества может быть выгодна только в одном случае - когда у нас электроэнергия будет стоить как в Европе. Вот будет стоить 1 квтч сетевого электричества более 25 рублей, вот тогда солнечные панели будут очень выгодны.
Пока же использовать солнечные панели выгодно только там, где нет сетевого электричества, а его проведение стоит слишком дорого. Предположим, что у вас его загородный дом, расположенный в 3-5 км от ближайшей электрической линии. Причем она высоковольтная (то есть потребуется установка трансформатора), а у вас нет соседей (не с кем разделить расходы). То есть за подключение к сети вам придется заплатить условно 500 000 рублей, а после этого еще и платить по сетевым тарифам. Вот в этом случае вам будет выгоднее купить на эту сумму солнечные панели, контроллер и аккумуляторы - ведь после ввода системы в эксплуатацию вам уже больше платить не нужно будет.
А пока стоит рассматривать фотовольтаику исключительно, как хобби.

  • Современные исследователи, которые занимаются гелиосистемами, постоянно ведут между собой дискуссии о КПД солнечных батарей. Это один из главных критериев, на основании которого оцениваются их эффективность и уровень производительности. Поскольку затраты на преобразование энергии Солнца в электрическую у панелей по-прежнему велики, производители беспокоятся о том, как сделать их КПД выше.

    Известно, что на 1м² площади элементов вырабатывается около 20% от общей мощности излучения Солнца, которое попадает на батарею. При этом речь идет о самых благоприятных условиях климата и погоды, которые бывают далеко не всегда. Следовательно, для увеличения показателя нужно установить много солнечных батарей. Это не всегда бывает удобно, да и по стоимости влетает в «копеечку». Поэтому нужно понимать, насколько целесообразно использование этих альтернативных источников энергии и какие перспективы имеются в дальнейшем.

    Итак, КПД батареи - это количество реально вырабатываемого ею потенциала, обозначаемое в процентах. Для его вычисления необходимо мощность электрической энергии разделить на мощность энергии Солнца, попадающей на поверхность солнечных панелей.

    Сейчас этот показатель находится в пределах от 12 до 25%. Хотя на практике, учитывая погодные и климатические условия, он не поднимается выше 15. Причиной тому являются материалы, из которых производят солнечные аккумуляторы. Кремний, который представляет собой основное «сырье» для их изготовления, не обладает способностью поглощения УФ-спектра и может работать только с инфракрасным излучением. К сожалению, из-за такого недостатка мы теряем энергию УФ-спектра и не применяем ее с пользой.

    Взаимосвязь КПД с материалами и технологиями

    Как работают солнечные батареи? По принципу свойств полупроводников. Свет, который падает на них, производит выбивание своими частицами электронов, находящихся на внешней орбите атомов. Большое количество электронов создает потенциал электрического тока - при замкнутых условиях цепи.

    Чтобы обеспечить нормальный показатель мощности, одного модуля будет мало. Чем больше панелей, тем эффективней работа радиаторов, отдающих электроэнергию аккумуляторам, где она будет накапливаться. Именно по этой причине эффективность солнечных батарей зависит и от количества устанавливаемых модулей . Чем их больше, тем больше энергии Солнца они поглощают, а показатель мощности у них становится на порядок выше.

    Можно ли повысить КПД батареи? Такие попытки были предприняты их создателями, и не один раз. Выходом из положения в будущем может стать производство элементов, состоящих из нескольких материалов и их слоев. Материалы следуют таким образом, чтобы модули могли вбирать в себя разные типы энергии.

    Например, если одно вещество работает с УФ-спектром, а другое - с инфракрасным, КПД солнечных батарей в разы повышается. Если мыслить на уровне теории, то наивысшим коэффициентом полезного действия может стать показатель около 90%.

    Также на КПД любой гелиосистемы большое влияние оказывает и разновидность кремния. Его атомы можно получить несколькими путями, и все панели, исходя из этого, делятся на три разновидности:

    • поликристаллы;
    • элементы из .

    Из монокристаллов производят солнечные батареи, КПД которых составляет около 20%. Они стоят дорого, так как эффективность у них самая высокая. Поликристаллы по стоимости гораздо ниже, так как в данном случае качество их работы напрямую зависит от чистоты кремния, используемого при их изготовлении.

    Элементы, в основе которых находится аморфный кремний, стали основой для производства тонкопленочных . Технология их изготовления гораздо проще, стоимость ниже, но и КПД меньше - не более 6%. Они быстро изнашиваются. Поэтому для улучшения срока их службы в них добавляются селен, галлий, индий.

    Как сделать работу солнечной панели максимально эффективной

    Производительность любой гелиосистемы зависит от:

    • температурных показателей;
    • угла падения лучей Солнца;
    • состояния поверхности (она всегда должна быть чистой);
    • погодных условий;
    • наличия или отсутствия тени.

    Оптимальный угол падения лучей Солнца на панель - 90°, то есть прямой. Уже существуют гелиосистемы, оснащенные уникальными устройствами. Они позволяют следить за положением светила в пространстве. Когда положение Солнца по отношению к Земле изменяется, меняется и угол наклона гелиосистемы.

    Постоянный нагрев элементов тоже не лучшим образом сказывается на их производительности. Когда энергия преобразуется, возникают ее серьезные потери. Поэтому между гелиосистемой и поверхностью, на которую она монтируется, всегда нужно оставлять небольшое пространство . Воздушные потоки, проходящие в нем, будут служить природным способом охлаждения.

    Чистота солнечных батарей - тоже немаловажный фактор влияющий на их КПД. Если они сильно загрязнены, они собирают меньше света, а значит, их эффективность снижается.

    Также и правильная установка играет большую роль. Нельзя при монтировании системы допускать, чтобы на нее падала тень. Лучшая сторона, на которой их рекомендуется устанавливать - южная.

    Переходя к погодным условиям, можно заодно ответить на популярный вопрос о том, работают ли солнечные батареи в пасмурную погоду. Безусловно, работа их продолжается, потому что электромагнитное излучение, исходящее от Солнца, попадает на Землю во все времена года. Конечно, производительность панелей (КПД) будет значительно меньше, особенно в регионах с обилием дождливых и пасмурных дней в году. Другими словами, электроэнергию они вырабатывать будут, но в гораздо меньшем количестве, чем в регионах с солнечным и жарким климатом.

    Немного о батареях-чемпионах по КПД

    Рекордсменом по коэффициенту полезного действия в гелиосистемах на данный момент считаются немецкие батареи. Они созданы в Институте гелиоэнергетики им. Фраунгофера. В их основу положены фотоэлементы, состоящие из нескольких слоев. Компания «Сойтек» активно внедряет их в сферу широкого потребления, начиная уже с 2005 года.

    Сами элементы - не более 4 мм толщиной, а солнечный свет фокусируется на их поверхности с помощью специальных линз. Благодаря им осуществляется преобразование световых частиц в электроэнергию, а КПД при этом составляет целых 47%.

    Второе место заслуженно занимают панели, созданные путем применения фотоэлементов из трех слоев фирмы «Шарп» . Это тоже солнечные батареи с высоким КПД, хотя и немного меньше - 44%.

    Три слоя представлены тремя веществами: фосфидом индия (галлия), арсенидом галлия и арсенидом индия (галлия). Между ними располагается диэлектрическая прослойка, применяемая для того, чтобы получить туннельный эффект. Что касается фокусировки света, ее получают путем применения известной линзы Френеля. Концентрация света достигается до уровня в 302 раза, а далее попадает в трехслойный полупроводниковый преобразователь.

    Безусловно, подобный рекорд КПД едва ли может быть доступен широкому кругу потребителей. Кстати, Илон Маск, известный американский миллиардер, является владельцем компании «Солар Сити» . Не так давно, в 2015 году, компания Маска разработала именно «потребительский» вариант солнечных батарей с коэффициентом полезного действия, превышающим 22%.

    Разработки и многочисленные лабораторные опыты проводятся и по сей день. Можно быть уверенными в том, что такие технологии имеют большое будущее - в качестве экологичного альтернативного источника энергии.

    В последнее время солнечная энергетика развивается столь бурными темпами

    В последнее время солнечная энергетика развивается столь бурными темпами, что за 10 лет доля солнечного электричества в мировой годовой выработке электроэнергии увеличилась с 0.02% в 2006 году до почти одного процента в 2016 году.


    Dam Solar Park - самая большая СЭС в мире. Мощность 850 мегаватт.

    Основным материалом для солнечных электростанций является кремний, запасы которого на Земле практически неистощимы. Одна беда – эффективность кремниевых солнечных батарей оставляет желать лучшего. Самые эффективные солнечные батареи имеют коэффициент полезного действия, не превышающий 23%. А средний показатель эффективности колеблется от 16% до 18%. Поэтому исследователи всего мира, занятые в области солнечной фотовольтаики, работают на тем, чтобы освободить солнечные фотопреобразователи от имиджа поставщика дорогого электричества.

    Развернулась настоящая борьба за создание солнечной суперячейки. Основные критерии – высокая эффективность и низкая стоимость. Национальная лаборатория возобновляемых источников энергии (NREL) в США даже выпускает периодически бюллетень, в котором отражаются промежуточные результаты этой борьбы. И в каждом выпуске показываются победители и проигравшие, аутсайдеры и выскочки, случайно ввязавшиеся в эту гонку.

    Лидер: солнечная многослойная ячейка

    Эти гелиевые преобразователи напоминают сэндвич из разных материалов, в том числе из перовскита, кремния и тонких пленок. При этом каждый слой поглощает свет только определенной длины волны. В результате эти при равной площади рабочей поверхности многослойные гелиевые ячейки вырабатывают значительно больше энергии, чем другие.

    Рекордное значение эффективности многослойных фотопреобразователей было достигнуто в конце 2014 года совместной немецко-французской группой исследователей под руководством доктора Франка Димрота во Фраунгоферовском институте систем солнечной энергии. Была достигнута эффективность в 46%. Такое фантастическое значение эффективности было подтверждено независимым исследованием в NMIJ/AIST - крупнейшем метрологическом центре Японии.


    Многослойная солнечная ячейка. Эффективность – 46%

    Эти ячейки состоят из четырех слоев и линзы, которая концентрирует на них солнечный свет. К недостаткам следует отнести наличие в структуре субстрата германия, который несколько увеличивает стоимость солнечного модуля. Но все недостатки многослойных ячеек в конечном счете устранимы, и исследователи уверены, что в самом ближайшем будущем их разработка выйдет из стен лабораторий в большой мир.

    Новичок года - перовскит

    Совершенно неожиданно в гонку лидеров вмешался новичок – перовскит. Перовскит – это общее название всех материалов, имеющих определенную кубическую структуру кристаллов. Хотя перовскиты известны давно, исследование солнечных ячеек, изготовленных из этих материалов, началось только в период с 2006 по 2008 годы. Первоначальные результаты были разочаровывающими: эффективность перовскитных фотопреобразователей не превышала 2%. При этом расчеты показывали, что этот показатель может быть на порядок выше. И действительно, после ряда успешных экспериментов корейские исследователи в марте 2016 года получили подтвержденную эффективность 22%, что само по себе уже стало сенсацией.


    Перовскитный солнечный элемент

    Преимуществом перовскитных элементов является то, что с ними более удобно работать, их легче производить, чем аналогичные кремниевые элементы. При массовом производстве перовскитных фотопреобразователей цена одного ватта электроэнергии могла бы достигнуть $0.10. Но специалисты считают, что до тех пор, пока перовскитные гелиевые ячейки достигнут максимальной эффективности и начнут выпускаться в промышленном количестве, стоимость «кремниевого» ватта электричества может быть существенно снижена и достигнуть того же уровня в $0.10.

    Экспериментально: квантовые точки и органические солнечные ячейки

    Эта разновидность солнечных фотопреобразователей пока находится на ранней стадии развития и пока не может рассматриваться как серьезный конкурент существующим гелиевым ячейкам. Тем не менее разработчик – Университет Торонто – утверждает, что согласно теоретическим расчетам, эффективность солнечных батарей на базе наночастиц – квантовых точек ‒ будет выше 40%. Суть изобретения канадских ученых состоит в том, что наночастицы – квантовые точки ‒ могут поглощать свет в различных диапазонах спектра. Изменяя размеры этих квантовых точек, можно будет выбрать оптимальный диапазон работы фотопреобразователя.


    Солнечная ячейка на базе квантовых точек

    А учитывая, что этот нанослой может наноситься методом распыления на любую, в том числе и прозрачную основу, то в практическом применении этого открытия просматриваются многообещающие перспективы. И хотя на сегодняшний день в лабораториях при работе с квантовыми точками достигнут показатель эффективности, равный всего11.5%, сомнений в перспективности этого направления нет ни у кого. И работы продолжаются.

    Solar Window – новые солнечные ячейки с эффективностью 50%

    Компания Solar Window из штата Мэриленд (США) представила революционную технологию «солнечного стекла», которая в корне меняет традиционные представления о солнечных батареях.

    Ранее уже были сообщения о прозрачных гелиевых технологиях, а также о том, что эта компания обещает увеличить в разы эффективность солнечных модулей. И, как показали последние события, это были не просто обещания, а эффективность 50% - уже не только теоретические изыски исследователей компании. В то время как другие производители только выходят на рынок с более скромными результатами, Solar Window уже представила свои поистине революционные высокотехнологичные разработки в области гелиевой фотовольтаики.

    Эти разработки открывают дорогу к выпуску прозрачных солнечных батарей, имеющих значительно более высокую эффективность по сравнению с традиционными. Но это не единственный плюс новых солнечных модулей из Мэриленда. Новые гелиевые элементы могут легко крепиться к любым прозрачным поверхностям (например, к окнам), могут работать в тени или при искусственном освещении. Благодаря своей дешевизне инвестиции в оснащение здания такими модулями могут окупиться в течение года. Для сравнения следует отметить, что срок окупаемости традиционных солнечных батарей колеблется от пяти до десяти лет, а это – огромная разница.



    Солнечные ячейки от компании Solar Window

    Компания Solar Window озвучила некоторые детали новой технологии получения солнечных батарей, имеющих столь высокую эффективность. Разумеется, главные know how остались за скобками. Все гелиевые элементы изготовлены, в основном, из органического материала. Слои элементов состоят из прозрачных проводников, углерода, водорода, азота и кислорода. По данным компании, производство этих солнечных модулей настолько безвредно, что оно оказывает в 12 раз меньшее воздействие на окружающую среду, чем производство традиционных гелиевых модулей. В течение ближайших 28 месяцев первые прозрачные солнечные батареи будут установлены в некоторых зданиях, школах, офисах, а также в небоскребах.

    Если говорить о перспективах развития гелиевой фотовольтаики, то очень похоже, что традиционные кремниевые солнечные батареи могут отойти в прошлое, уступив место высокоэффективным, легким, многофункциональным элементам, открывающим самые широкие горизонты гелиевой энергетике. опубликовано



    Просмотров