Системы открытого испарения компьютера. Сборка и техническое обслуживание системы охлаждения системного блока персонального компьютера. Недостатки закрытой системы отопления

Проблема охлаждения компьютера

Работа современных высокопроизводительных электронных компонентов, составляющих основу компьютеров, сопровождается значительным тепловыделением, особенно при эксплуатации их в форсированных режимах разгона (overclocking). Эффективная работа таких компонентов требует адекватных средств охлаждения, обеспечивающих необходимые температурные режимы их работы. Как правило, такими средствами поддержки оптимальных температурных режимов являются кулеры, основой которых являются традиционные радиаторы и вентиляторы.

Надежность и производительность таких средств непрерывно повышаются за счет совершенствования их конструкции, использования новейших технологий и применения в их составе разнообразных датчиков и средств контроля. Это позволяет интегрировать подобные средства в состав компьютерных систем, обеспечивая диагностику и управление их работой с целью достижения наибольшей эффективности при обеспечении оптимальных температурных режимов эксплуатации компьютерных элементов, что повышает надежность и удлиняет сроки их безаварийной работы.

(греется за счет работы микроэлементов таких как транзисторы)

Основные источники тепла

В персональном компьютере являются: видеокарта, процессор, элементы системной платы (питание процессора, чипсет и др.), а так же блок питания. Остальные элементы ПК греются не так сильно, как выше перечисленные.

Средний процессор выделяет от 60 до 130 ватт тепла. Стандартная, игровая видеокарта во время работы греется до 70-100 градусов по Цельсию и это - абсолютно нормально; блок питания легко греется до 60 градусов; чипсет в мат. плате тоже греется до 55-65 градусов и т.д.

Нужно помнить, что мощность пропорциональна нагреву системы, чем мощнее сис-ма, тем больше выделяется тепла.

Тепло может утилизироваться:

1.В атмосферу (радиаторные системы охлаждения):

1.Пассивное охлаждение (отвод тепла от радиатора осуществляется излучением тепла и естественной конвекцией)

2.Активное охлаждение (отвод тепла от радиатора осуществляется излучением (радиацией) тепла и принудительной конвекцией (обдув вентиляторами))

2.Вместе с теплоносителем (системы жидкостного охлаждения)

3.За счет фазового перехода теплоносителя (системы открытого испарения)

Типы систем охлаждения компьютера

1.Системы воздушного (аэрогенного) охлаждения

2.Системы жидкостного охлаждения

3.Фреоновая установка

4.Системы открытого испарения

Системы воздушного (аэрогенного) охлаждения

Принцип работы заключается в непосредственной передаче тепла от нагревающегося компонента на радиатор за счёт теплопроводности материала или с помощью тепловых трубок. Радиатор излучает тепло в окружающее пространство тепловым излучением и передаёт тепло теплопроводностью окружающему воздуху, что вызывает естественную конвекцию окружающего воздуха

Поверхности нагревающегося компонента и радиатора после шлифовки имеют шероховатость около 10 мкм, а после полировки — около 5 мкм. Эти шероховатости не позволяют поверхностям плотно соприкасаться, в результате чего образуется тонкий воздушный промежуток с очень низкой теплопроводностью. Для увеличения теплопроводности промежуток заполняют теплопроводными пастами.

Наиболее распространенный тип систем охлаждения в настоящее время. Отличается высокой универсальностью — радиаторы устанавливаются на большинство компьютерных компонентов с высоким тепловыделением. Эффективность охлаждения зависит от эффективной площади рассеивания тепла радиатора, температуры и скорости проходящего через него воздушного потока. На компоненты с относительно низким тепловыделением (чипсеты, транзисторы цепей питания, модули оперативной памяти), как правило, устанавливаются простейшие пассивные радиаторы. На некоторые компьютерные компоненты, в частности, жёсткие диски, установить радиатор затруднительно, поэтому они охлаждаются за счёт обдува вентилятором. На центральный и графический процессоры устанавливаются преимущественно активные радиаторы (кулеры). Пассивное воздушное охлаждение центрального и графического процессоров требует применения специальных радиаторов с высокой эффективностью отвода тепла при низкой скорости проходящего воздушного потока и применяется для построения бесшумного персонального компьютера.

Системы жидкостного охлаждения

Принцип работы — передача тепла от нагревающегося компонента радиатору с помощью рабочей жидкости, которая циркулирует в системе. В качестве рабочей жидкости чаще всего используется дистиллированная вода, часто с добавками, имеющими бактерицидный и/или антигальванический эффект; иногда — масло, антифриз, жидкий металл, или другие специальные жидкости.

Система жидкостного охлаждения состоит из:

Помпы — насоса для циркуляции рабочей жидкости

Теплосъёмника (ватерблока, водоблока, головки охлаждения) — устройства, отбирающего тепло у охлаждаемого элемента и передающего его рабочей жидкости

Радиатора для рассеивания тепла рабочей жидкости. Может быть активным или пассивным

Резервуара с рабочей жидкостью, служащего для компенсации теплового расширения жидкости, увеличения тепловой инерции системы и повышения удобства заправки и слива рабочей жидкости

Шлангов или труб

(Опционально) Датчика потока жидкости

Жидкость должна обладать высокой теплопроводностью, чтобы свести к минимуму перепад температур между стенкой трубки и поверхностью испарения, а также высокой удельной теплоёмкостью, чтобы при меньшей скорости циркуляции жидкости в контуре обеспечить большую эффективность охлаждения.

Фреоновые установки

Холодильная установка, испаритель который установлен непосредственно на охлаждаемый компонент. Такие системы позволяют получить отрицательные температуры на охлаждаемом компоненте при непрерывной работе, что необходимо для экстремального разгона процессоров.

Недостатки:

Необходимость теплоизоляции холодной части системы и борьбы с конденсатом (это общая проблема систем охлаждения, работающих при температурах ниже температуры окружающей среды)

Трудности охлаждения нескольких компонентов

Повышенное электропотребление

Сложность и дороговизна

Системы открытого испарения

Установки, в которых в качестве хладагента (рабочего тела) используется сухой лёд, жидкий азот или гелий, испаряющийся в специальной открытой ёмкости (стакане), установленной непосредственно на охлаждаемом элементе. Используются в основном компьютерными энтузиастами для экстремального разгона аппаратуры («оверклокинга»). Позволяют получать наиболее низкие температуры, но имеют ограниченное время работы (требуют постоянного пополнения стакана хладагентом).

Полупроводниковые холодильники Пельтье

Итак, суть открытого эффекта заключается в следующем: при прохождении электрического тока через контакт двух проводников, сделанных из различных материалов, в зависимости от его направления, помимо джоулева тепла выделяется или поглощается дополнительное тепло, которое получило название тепла Пельтье. Степень проявления данного эффекта в значительной мере зависит от материалов выбранных проводников и используемых электрических режимов.

Пассивные системы

Безвентиляторных систем охлаждения не бывает - тепло должно куда-то деваться из закрытого корпуса. Пассивная система охлаждения хороша тем, что большую часть времени не требует принудительного обдува: вентилятор, закрепленный на ней, включается только в критическом режиме.

Теплова́я тру́бка, теплотру́бка

элемент системы охлаждения, принцип работы которого основан на том, что в закрытых трубках из теплопроводящего металла (например, меди) находится легкокипящая жидкость. Перенос тепла происходит за счёт того, что жидкость испаряется на горячем конце трубки, поглощая теплоту испарения, и конденсируется на холодном, откуда перемещается обратно на горячий конец.

Тепловые трубки бывают двух видов: гладкостенные и с пористым покрытием изнутри. В гладкостенных трубках сконденсировавшаяся жидкость возвращается в зону испарения под действием исключительно силы тяжести — иными словами, такая трубка будет работать только в положении, когда зона конденсации находится выше зоны испарения, а жидкость имеет возможность стекать в зону испарения. Тепловые трубки с наполнителем (фитилями, керамикой и т. п.) могут работать практически в любом положении, поскольку жидкость возвращается в зону испарения по его порам под действием капиллярных сил, а сила тяжести в этом процессе играет незначительную роль.

Материалы и хладагенты для тепловых трубок выбираются в зависимости от условий применения: от жидкого гелия для сверхнизких температур до ртути и даже индия для высокотемпературных применений. Однако большинство современных трубок в качестве рабочей жидкости используют аммиак, воду, метанол и этанол.

Активные системы Лопастные кулеры

Разъём Molex имеет три провода: чёрный (земля), красный (плюс) и жёлтый (сигнальный). PC-Plug имеет четыре провода: два чёрных (земля), жёлтый (+12 Вольт) и красный (+5 Вольт). Разъёмы Molex устанавливаются на материнских платах, чтобы система сама могла контролировать скорость вращения вентилятора, подавая на красный провод различное напряжение (обычно от 8 до 12 В), и изменять её в случае необходимости. По жёлтому сигнальному проводу материнская плата получает от вентилятора информацию о частоте вращения его лопастей. Сегодня это стало очень актуальным, поскольку остановившийся на кулере процессора вентилятор может привести к повреждению процессора. Поэтому современные материнские платы следят, чтобы вентилятор всегда вращался, и если он останавливается, то выключают компьютер. Подключение через Molex имеет один недостаток: к материнским платам опасно цеплять вентиляторы с потребляемой мощностью более 6 Вт. Разъём же PC-Plug выдержит десятки Ватт, но при подключении к нему Вы не сможете узнать, работает ли Ваш вентилятор или нет. Сегодня всё чаще вентиляторы имеют в комплекте переходники PC-Plug - Molex, чтобы подключать их к блоку питания, или даже сразу оба разъёма: PC-Plug и Molex, чтобы получать питание от БП компьютера, а по сигнальному проводу Molex-а сообщать материнской плате о скорости работы моторчика.

Программы мониторинга температур

SpeedFan - программа, предназначенная для слежения за разными датчиками компьютера, отображающими: температуру жесткого диска, чипсета, процессора, вентиляторов, а также их скорость, напряжение и т.д.

CPU-Z Бесплатная утилита, которая собирает и показывает сведения об основных аппаратных компонентах компьютера.

OpenHardwareMonitor

AIDA64

Бренды кулеров

Thermalright

SilverStone

Zalman

Thermaltake

Deepcool

Открытая система отопления является самой простой и энергонезависимой системой с естественной циркуляцией. Основана такая система на законах термодинамики. На выходе из котла создаётся повышенное давление, далее горячая вода проходит по трубам в область с более низким давлением, при прохождении теряя температуру.

Далее охлаждённый теплоноситель возвращается обратно в отопительный котёл, где снова нагревается. Происходит естественная циркуляция теплоносителя. Система функционирует исключительно на воде, так как использование антифризов для отопления приводит к их быстрому испарению.

В открытой системе теплоснабжения обязательно наличие расширительного бака, так как нагретая вода расширяется. Расширительный бак служит для приёма излишков воды при расширении и возврата её в систему при остывании, а также для удаления воды при чрезмерном её объёме. Бак герметичен не полностью, поэтому вода испаряется, вследствие чего необходимо постоянно возобновлять её уровень. В открытой системе отопления не используется насос. Система достаточно проста. Состоит из труб, стального расширительного бачка, радиаторов и котла. Применяются дизельные, газовые котлы и котлы на твёрдом топливе , кроме электрических.

В открытой системе отопления вода циркулирует медленно. Поэтому трубы при эксплуатации должны разогреваться постепенно, чтобы избежать их повреждения и закипания теплоносителя. Это может привести к преждевременному износу оборудования. Если в зимний период отопление не используется, то вода из системы обязательно сливается, во избежание замерзания трубопровода.

Чтобы циркуляция теплоносителя осуществлялась на необходимом уровне, необходимо производить монтаж отопительного котла в более низком месте системы, а в самом высоком устанавливать расширительный бак, например, на чердаке. Зимой расширительный бак необходимо утеплить. При установке трубопровода в открытой системе отопления требуется использовать минимальное количество поворотов, фасонных и соединительных деталей.

В закрытой системе отопления все элементы системы герметичны, отсутствует испарение воды. Циркуляция осуществляется при помощи насоса. Так называемая система с принудительной циркуляцией теплоносителя включает в себя трубы, котёл, радиаторы, расширительный бак, циркуляционный насос .

В закрытой системе отопления при повышении температуры клапан расширительного бака открывается и забирает излишки теплоносителя. При понижении температуры теплоносителя циркуляционный насос закачивает его обратно в систему. В данной системе отопления поддерживается давление в заранее установленных пределах. Благодаря этому, осуществляется функция деаэрации теплоносителя.

Для стабильной работы системы закрытого отопления также используется расширительный бак из высокопрочного металла. Это закрытый бак, состоящий из двух половин, завальцованных друг к другу.

Внутри располагается мембрана (диафрагма) из высокопрочной жаростойкой резины. Также внутри имеется небольшой объём газа (может быть азот, который закачивается на заводе-производителе, или воздух, накапливающийся в системе по необходимости). Мембрана разделяет бак на части: одна часть - куда поступают излишки воды при нагреве системы отопления, в другой части находится азот или воздух, не вступающие в прямое соприкосновение с водой. Таким образом, теплоноситель при нагреве поступает в расширительный бак и проникает в мембрану. При остывании теплоносителя газ, находящийся за мембраной, начинает выталкивать его обратно в систему.

Отличия открытой и закрытой системы отопления

Имеются следующие отличительные особенности систем открытого и закрытого отопления:

  1. По месту размещения расширительного бака. В открытой системе отопления бак располагают в наивысшем месте системы, а в закрытой системе расширительный бак можно устанавливать в любом месте, даже рядом с котлом.
  2. Закрытая система отопления изолирована от атмосферных потоков, что препятствует попаданию воздуха. Это увеличивает срок службы. За счёт создания дополнительного давления в верхних узлах системы снижается возможность образования воздушных пробок в радиаторах, расположенных сверху.
  3. В открытой системе отопления используются трубы с большим диаметром, что создаёт неудобства, также монтаж труб осуществляется под наклоном для обеспечения циркуляции. Не всегда имеется возможность скрыть толстостенные трубы. Для обеспечения всех правил гидравлики необходимо учитывать уклоны распределения потоков, высоту подъёма, повороты, заужения, подключение к радиаторам.
  4. В закрытой системе отопления используются трубы меньшего диаметра, что удешевляет конструкцию.
  5. Также в закрытой системе отопления важно правильно установить насос, что позволит избежать шума.

Преимущества открытой системы отопления

  • простое обслуживание системы;
  • отсутствие насоса обеспечивает бесшумную работу;
  • равномерный прогрев отапливаемого помещения;
  • быстрый пуск и остановка системы;
  • независимость от электроснабжения, если в доме не будет электричества, то система будет работоспособна;
  • высокая надёжность;
  • не требуется особых навыков для установки системы, в первую очередь устанавливается котёл, мощность котла будет зависеть от отапливаемой площади.

Недостатки открытой системы отопления

  • возможность уменьшения срока эксплуатации системы при попадании воздуха, так как уменьшается теплопередача, в результате чего появляется коррозия, нарушается циркуляция воды, образуются воздушные пробки;
  • воздух, содержащийся в открытой системе отопления, может вызывать кавитацию, при которой разрушаются элементы системы, находящиеся в кавитационной зоне, такие, как арматура, поверхности труб;
  • возможность замерзания теплоносителя в расширительном баке;
  • медленный нагрев системы после включения;
  • необходим постоянный контроль уровня теплоносителя в расширительном баке для исключения испарения;
  • невозможность использования антифриза в качестве теплоносителя;
  • достаточна громоздка;
  • низкий коэффициент полезного действия.

Преимущества закрытой системы отопления

  • простой монтаж ;
  • нет необходимости постоянно контролировать уровень теплоносителя;
  • возможность применения антифриза , не боясь размораживания системы отопления;
  • путём увеличения или уменьшения количества теплоносителя, подаваемого в систему, можно регулировать температуру в помещении;
  • из-за отсутствия испарения воды снижается необходимость её подпитывать из внешних источников;
  • самостоятельное регулирование давления;
  • система экономичная и технологичная, имеет более длительный срок эксплуатации;
  • возможность подключения к закрытой системе отопления дополнительных источников отопления.

Недостатки закрытой системы отопления

  • самый главный недостаток - зависимость системы от наличия постоянного электроснабжения ;
  • при работе насоса требуется электричество;
  • для аварийного электроснабжения рекомендуется приобрести небольшой генератор ;
  • при нарушении герметичности стыков возможно попадание воздуха в систему;
  • размеры расширительных мембранных баков в закрытых помещениях большой площади;
  • бак заполняется жидкостью на 60−30%, наименьший процент заполнения приходится на большие баки, на больших объектах применяются баки с расчётным объёмом в несколько тысяч литров.
  • возникает проблема с размещением таких баков, используются специальные установки, чтобы поддерживать определённое давление.

Каждый, кто собирается установить систему отопления, сам выбирает, какая система проще и надёжней для него.

Открытую систему отопления, благодаря простоте эксплуатации, большой надёжности, используют для оптимального отапливания небольших помещений. Это могут быть небольшие одноэтажные дачные дома, а также загородные дома.

Закрытая система отопления является более современной и более сложной. Её применяют в многоэтажных домах и коттеджах.

Системы жидкостного охлаждения

Принцип работы - передача тепла от нагревающегося компонента радиатору с помощью рабочей жидкости, которая циркулирует в системе. В качестве рабочей жидкости чаще всего используется дистиллированная вода, часто с добавками имеющими бактерицидный и/или антигальванический эффект; иногда - масло, антифриз, жидкий металл , или другие специальные жидкости.

Система жидкостного охлаждения состоит из:

Помпы -- насоса для циркуляции рабочей жидкости

Теплосъёмника (ватерблока, водоблока, головки охлаждения) -- устройства, отбирающего тепло у охлаждаемого элемента и передающего его рабочей жидкости

Радиатора для рассеивания тепла рабочей жидкости. Может быть активным или пассивным

Резервуара с рабочей жидкостью, служащего для компенсации теплового расширения жидкости, увеличения тепловой инерции системы и повышения удобства заправки и слива рабочей жидкости

Шлангов или труб

(Опционально) Датчика потока жидкости

Жидкость должна обладать высокой теплопроводностью, чтобы свести к минимуму перепад температур между стенкой трубки и поверхностью испарения, а также высокой удельной теплоёмкостью, чтобы при меньшей скорости циркуляции жидкости в контуре обеспечить большую эффективность охлаждения.

Фреоновые установки

Холодильная установка, испаритель которой установлен непосредственно на охлаждаемый компонент. Такие системы позволяют получить отрицательные температуры на охлаждаемом компоненте при непрерывной работе, что необходимо для экстремального разгона процессоров.

Недостатки:

Необходимость теплоизоляции холодной части системы и борьбы с конденсатом

Трудности охлаждения нескольких компонентов

Повышенное электропотребление

Сложность и дороговизна

Ватерчиллеры

Системы, совмещающие системы жидкостного охлаждения и фреоновые установки. В таких системах антифриз, циркулирующий в системе жидкостного охлаждения, охлаждается с помощью фреоновой установки в теплообменнике. Данные системы позволяют использовать отрицательные температуры, достижимые с помощью фреоновых установок для охлаждения нескольких компонентов (в обычных фреонках охлаждение нескольких компонентов затруднено). К недостаткам таких систем относится большая их сложность и стоимость, а также необходимость теплоизоляции всей системы жидкостного охлаждения.

Системы открытого испарения

Установки, в которых в качестве хладагента используется сухой лёд, жидкий азот или гелий, испаряющийся в специальной открытой ёмкости, установленной непосредственно на охлаждаемом элементе. Используются в основном компьютерными энтузиастами для экстремального разгона аппаратуры («оверклокинга»). Позволяют получать наиболее низкие температуры, но имеют ограниченное время работы (требуют постоянного пополнения стакана хладагентом).

Системы каскадного охлаждения

Две и более последовательно включенных фреоновых установок. Для получения более низких температур требуется использовать фреон с более низкой температурой кипения. В однокаскадной холодильной машине в этом случае требуется повышать рабочее давление за счет применения более мощных компрессоров. Альтернативный путь - охлаждение радиатора установки другой фреонкой (т. е. их последовательное включение), за счет чего снижается рабочее давление в системе и становится возможным применение обычных компрессоров. Каскадные системы позволяют получать гораздо более низкие температуры, чем однокаскадные и, в отличие от систем открытого испарения, могут работать непрерывно. Однако, они являются и наиболее сложными в изготовлении и наладке.

Системы с элементами Пельтье

Элемент Пельтье для охлаждения компьютерных компонентов никогда не применяется самостоятельно из-за необходимости охлаждения его горячей поверхности. Как правило, элемент Пельтье устанавливается на охлаждаемый компонент, а другую его поверхность охлаждают с помощью другой системы охлаждения (обычно воздушной или жидкостной). Так как компонент может охлаждаться до температур ниже температуры окружающего воздуха, необходимо применять меры по борьбе с конденсатом. По сравнению с фреоновыми установками элементы Пельтье компактнее и не создают шум и вибрацию, но заметно менее эффективны.

плохой контакт с ядром), это будет сразу видно: температура будет слишком высокой для данной модели процессора, что через некоторое время повлечет за собой его выход из строя. Следует помнить, что в случае процессоров AMD необходимо ориентироваться на реальную частоту, а не на рейтинг. В разных BlOS"ax частота шины может выставляться, как в виде номинальной (реальной) частоты, так и в виде эффективной. Тактовая частота процессора должна получиться умножением множителя на частоту системной шины. Приобретенный процессор может оказаться бракованным (такое случается даже в крупных солидных магазинах) или уже сгоревшим (при покупке "с рук"), и тогда на посткодере (который встраивается в современные материнские платы) при включении все время будет гореть "00".

Вставляем память.

Оперативная память, которая сейчас имеется в продаже, бывает пяти основных типов: DDR, DDR II, DDR III, Registered DDR, Dual Channel DDR. Выбор типа памяти и способ ее установки также зависят от платформы. Socket478 поддерживает работу памяти в двухканальном режиме. Как правило, CPU с частотой FSB 800 МГц требуют обязательной работы RAM именно в Dual DDR mode (LGA775). Организовать такую связку на высокой частоте (двухканальная память - процессор) способен чипсет NVIDIA nForce2, который нормально поддерживает Dual DDR. Обычно, чтобы задействовать дуальный режим, установка модулей памяти происходит через слот (например, в первый и третий), причем большинство производителей материнских плат специально окрашивают парные слоты в одинаковый цвет, а за более точной информацией стоит обратиться к руководству пользователя. В общем случае (при условии поддержки материнской платой) Dual DDR можно организовать на платформах Socket478, SocketA, Socket939 - для остальных требуется специальная память или же работа RAM только в обычном режиме. Так, например, контроллер памяти у AMD Athlon 64 (подключающийся к Socket754) не имеет возможности работы в двойном режиме (поскольку на процессоре физически "не хватает" количества лапок), тогда как под Socket940 необходима специальная Registered DDR (с технической точки зрения на русский язык это правильно переводить как "буферизированная", а не "регистровая" память). Из-за внешнего сходства различных модулей пользователи иногда вставляют в слот неподходящую память. Также бывает, что пользователи вставляют планку не той стороной. Такие ошибки могут привести к сгоранию или поломке модуля и платы. Чтобы этого избежать, перед приобретением нужно прочитать в User"s Guide материнской платы, какая память подходит для данной модели платы и как правильно производить установку.

Настройка памяти в BIOS.

Это важная операция, поскольку от настроек памяти напрямую зависит производительность системы (в целом можно выиграть около 5% по сравнению с заниженными значениями "по умолчанию"). К сожалению, единого названия всех нужных нам опций нет, и каждый производитель материнских плат сам выбирает, в каком меню они находятся, можно лишь привести некоторые наиболее распространенные заголовки. При покупке модуля памяти обычно пишется некая последовательность чисел (иначе ее называют формулой), которые обозначают временные промежутки в работе чипов. Формула памяти состоит из трех цифр, например, 5-2-2, и обозначает, соответственно, RAS-RAS_to_CAS-CAS время доступа к адресным ячейкам. Выставлять данные значения следует напротив соответствующих названий параметров (например, часто употребляется "DRAM RAS# Latency", "Tras", "Row Address Strobe" для обозначения первой цифры). Также из-за неправильной настройки частоты шины или временных параметров возможны проблемы при включении компьютера (происходит начальная инициализация, после чего сбой в виде перезагрузки, выключения или зависания). В такой ситуации необходимо увеличить одно или все значения таймингов или понизить частоту шины. В любом случае нужно стремиться к оптимальному их значению - чем меньше время доступа, тем быстрее обрабатываются данные.

Видеокарта.

Видеоплаты и особенности их подключения также довольно разнообразны, поэтому здесь следует быть не менее аккуратным, чтобы не ошибиться при выборе и установке. Существует два слота для подключения графических карт - это AGP и PCI Express 16x. Первый - более старый, работает на меньшей скорости и поддерживает всего одно устройство такого типа (кроме спецификации за номером 3.0, где их может быть два). Стандарт AGP 3.0 описывает четыре скорости работы (от 1х - 266 Мб/сек до 8х - 2 Гб/сек). Существует его расширение - AGP Pro (увеличенная длина слота для подачи дополнительного питания, однако на деле плат под этот разъем очень мало). Платы AGP совместимы с разъемом AGP Pro. Главное отличие второй шины (PCI Express 16x) в том, что она является последовательной и поддерживает скорость передачи данных до 8 Гб/сек. Также возросла электрическая мощность, которая может подаваться по этой шине, так что новые видеокарты вполне могут обойтись без дополнительного питания. При установке современного графического ускорителя не стоит забывать о требующемся дополнительном питании и подключить разъем (Molex) от БП. Симптомы, сигнализирующие о его отсутствии, выражаются в виде сообщения на экране перед загрузкой компьютера, попискиваниями из PC Speaker"a, отсутствия изображения (способ извещения пользователя различается у разных производителей).

Установки AGP в BIOS.

В BlOS"e желательно изменить некоторые параметры, касающиеся слота AGP, которые, однако, не имеют критического влияния на производительность. Если в системе одновременно установлены PCI-адаптер и AGP-адаптер, в опции "Init Display First" можно выбрать, какой из них будет инициализироваться первым (на него будут выводиться системные сообщения до загрузки ОС). "AGP Aperture Size" (размер апертуры AGP) лучше задать в 64-128 Мб, хотя для новых моделей это ни на что не влияет, поскольку эта функция остается незадействованной. По некоторым данным при меньшем значении возможны проблемы в современных играх. "AGP Speed" - при наличии поддержки высокой скорости передачи данных значение 8х будет оптимальным, чтобы не занижать производительность графической подсистемы.

Подключаем питание.

Для подачи напряжения на материнскую плату предназначен разъем АТХ (широкая 20-контактная колодка), однако этим многие системы не ограничиваются. Для SocketA, чаще всего, ничего больше не нужно, и компьютер включится без проблем, а вот Socket478 может отказаться работать без подсоединения колодки ATX12V (четыре контакта, расположенные квадратом). Процессоры же, имеющие 754/939/940/1155/1156 ножек, заработают только с 12-вольтовым разъемом питания, так как потребляют повышенную мощность. С LGA775 вообще отдельная история, и здесь уже возможны два способа:

Первый - это когда на материнской плате имеется целых три колодки, а именно: стандартный ATX, ATX12V, Molex, и все их требуется подключить к блоку питания.

Второй случай - удлиненная на 4 контакта колодка АТХ, правда, такие блоки питания еще мало распространены, но в продаже уже можно встретить переходники (в обе стороны), которые позволяют использовать и стандартный разъем (тогда не нужно подключать Molex). Иногда у блока питания может иметься дополнительный провод желтого цвета с разъемом FAN (трехконтактный), предназначенный для индикации скорости вращения вентилятора в самом БП, и тогда, присоединив его к соответствующему разъему материнской платы, можно будет отслеживать этот показатель. Зачастую блоки питания, предназначенные для поставки в разные страны, имеют переключатель напряжения сети (на задней панели), который встречается и в неправильном 110-вольтовом положении, и если прозевать этот момент и оставить все как есть, можно поплатиться сгоревшим предохранителем. Если же перемычка отсутствует, значит стоит обратить внимание на стикеры на корпусе, где указаны рабочие режимы блока (чтобы убедиться в пригодности устройства). Стоит напомнить, что при переподключении любых устройств обязательно отключать БП от сети, поскольку даже в выключенном состоянии (режим сна) он подает дежурное напряжение на материнскую плату.

Первое включение

После подключения CPU, кулера, памяти, видеоадаптера и питания еще вне системного блока для оценки работоспособности железа необходимо осуществить контрольный запуск системы. Материнскую плату при этом следует положить на антистатический пакет. Если все в порядке, из динамика должен раздаться короткий одиночный сигнал, а на экране появится приглашение нажать для входа в BIOS какую-нибудь клавишу, где необходимо произвести описанные выше настройки CPU, памяти и AGP.

Сборка в корпус.

Убедившись в корректном функционировании базовых узлов компьютера, приступим к установке всего в системный блок. Делать это следует, не снимая память, процессор и кулер с материнской платы, поскольку в системном блоке подключать их будет неудобно. Главное в процессе не применять силы, а крепежные винты сильно не затягивать, дабы избежать деформации платы.

Винчестеры.

Подключение HDD может быть различно в зависимости от имеющегося оборудования - на данный момент в домашних условиях наиболее распространены IDE и SATA варианты.

IDE. Для определения места подключения этих устройств стоит заглянуть в руководство к материнской плате, поскольку у многих современных материнских плат имеется встроенный RAID-контроллер, из-за чего добавляется еще несколько IDE-разъемов. При подключении двух устройств на один IDE-канал обязательно нужно определить одно из них как Master, а другое как Slave. Делается это с помощью перемычек на корпусе устройства. Подсоединять жесткие диски следует 80-жильным шлейфом, для CD/DVD достаточно 40-жильного. Определить первую ножку на плате и на устройстве можно по маркировке, а на шлейфе первый провод обозначается красным или синим цветом. На разъема

Курсовая работа

по дисциплине: Эксплуатация объектов сетевой инфраструктуры

Тема: «Модернизация системы охлаждения настольного компьютера»

Выполнил студент группы Д-КС-31

В. Н. Решетников _______________

(ФИО, подпись студента)

«__» ____________ 201___г.

Руководитель __________________

Откидач Наталья Викторовна

(ФИО, подпись руководителя)

Курсовая работа защищена

с оценкой ____________________

Дата защиты «___» ________ 201__ г.

Ярославль 2017

Введение
Цель курсового проекта
Задачи курсового проекта
1. Аналитический сбор по теме «Система охлаждения персонального компьютера»
1.1. Система воздушного охлаждения
1.1.1. Пассивная
1.1.2. Активная
1.2. Система жидкостного охлаждения
1.3. Фреоновые установки
1.4. Ватерчиллеры
1.5. Системы открытого испарения
1.6. Системы каскадного охлаждения
1.7. Системы с элементами Пельтье
2. Модернизация системы охлаждения
2.1. Установка fullcover-водоблока на материнскую плату
2.2. Установка fullcover-водоблока на процессор
2.3. Установка fullcover-водоблока на видеокарту
2.4. Установка радиатора/помпы/ резервуара
3. Полная сбока СВО
4. Включение и работа
5. Расходы
Заключение
Список использованной литературы
Приложение А. Схема циркуляции воздуха в системном блоке ПК
Приложение Б. Схема циркуляции воды в СВО ПК
Приложение В. Схема системы жидкостного охлаждения ПК

Введение

Одним из важных направлений в работе персонального компьютера является система его охлаждения. Система отвечает за поддержку оптимальной температуры для работы всех компонентов. Иногда, в силу сильной нагрузки или модернизации самого компьютера, стандартного охлаждения не хватает, чтобы охлаждать компоненты до нужной температуры, для этого ставится дополнительное охлаждение или оно модернизируется.

При сборке мощных персональных компьютеров используются множество кулеров для активного охлаждения или устанавливаются дополнительные медные радиаторы для пассивного охлаждения, в некоторых случаях и этого мало, на эти случаи существует жидкая система охлаждения, использующая в качестве хладагента воду, азот или сухой лёд.


Актуальность курсового проекта

Данная курсовая работа является актуальной, так как сама проблема охлаждения компьютера становится всё более актуальной с ростом его производительности, ведь большая производительность означает потребление большой мощности, что естественно приводит к увеличению температуры его компонентов. Основные потребители энергии, а значит и источники тепла в компьютере это центральный процессор, графический процессор и блок питания. Именно они и требуют собственных систем охлаждения.

Цель курсового проекта

Конечной целью данной работы является исследование и установка дополнительного водяного охлаждения настольного компьютера, для выхода накопившегося в нем тепла и предотвращения перегрева компонентов, таких как: ЦПУ, Видеокарта и Материнская плата.

Задачи курсового проекта

1.Дать общее понятие о различных системах охлаждения.

2.Описать основные принципы их работы.

3.Установить на настольный компьютер систему водяного охлаждения.

Аналитический сбор по теме «Система охлаждения персонального компьютера»

Система охлаждения компьютера - набор средств для отвода тепла от нагревающихся в процессе работы компьютерных компонентов.

Тепло в конечном итоге может утилизироваться:

· В атмосферу (радиаторные системы охлаждения):

1. Пассивное охлаждение (отвод тепла от радиатора осуществляется излучением тепла и естественной конвекцией)

2. Активное охлаждение (отвод тепла от радиатора осуществляется излучением [радиацией] тепла и принудительной конвекцией [обдув вентиляторами])

· Вместе с теплоносителем (системы жидкостного охлаждения)

· За счет фазового перехода теплоносителя (системы открытого испарения)

По способу отвода тепла от нагревающихся элементов системы охлаждения делятся на:

· Системы воздушного (аэрогенного) охлаждения

· Системы жидкостного охлаждения

· Фреоновая установка

· Системы открытого испарения

Также существуют комбинированные системы охлаждения, сочетающие элементы систем различных типов:

· Ватерчиллер

· Системы с использованием элементов Пельтье


Системы воздушного охлаждения

Пассивная

Пассивные системы были первыми охлаждающими устройствами в эволюции холодильного оборудования для компьютеров. Свое название они получили из-за отсутствия движущихся механизмов и источников питания.

Обычный радиатор (рис.1) – самая распространенная пассивная система охлаждения, работающая на принципах теплообмена с окружающим воздухом и естественной конвекции воздушных потоков (горячий воздух поднимается, холодный - опускается). Эффективность работы радиатора зависит от двух факторов: площади поверхности и материала изготовления.

Рис. 1. Радиатор

Чем больше площадь поверхности ребер радиатора – тем большее количество тепла он способен рассеять в окружающую среду. Но температуры компонентов росли, рос и радиатор, грозя заполнить собой весь внутренний объем системного блока и превратить компьютер в обогреватель. Именно в тот момент стали появляться радиаторы с волнообразной формой ребер, с многоярусными ребрами, игольчатые радиаторы и т.п.

Материалом изготовления первых радиаторов стал простой в обработке, дешевый и довольно теплопроводный алюминий. Но во времена «всемирного потепления процессоров» оказалось, что способности алюминия рассеивать тепло недостаточно. И тогда в ход пошла более дорогая, но более теплопроводная медь. Сначала из нее изготавливали только сердечники радиаторов с напрессованными алюминиевыми ребрами, а потом и вовсе стали изготавливать радиаторы целиком из меди.

Когда даже полностью медные радиаторы достигли внушительных размеров и веса, для отвода от горячих компонентов стали применять так называемые теплоотводные трубки. Они представляют собой закрытую металлическую трубку (в качестве материалов трубки чаще всего используется все та же медь) с откачанным воздухом, внутри которой находится некоторое количество жидкости и капиллярная система. Жидкость, испаряясь на горячем конце трубки, мгновенно переносит тепло, распределяя его равномерно по всей длине трубки, и конденсируется на холодном конце, возвращаясь в исходное жидкое состояние. Эффективность тепловых трубок во много раз выше, чем у металлического прутка того же диаметра, но для непосредственного охлаждения они не подходят. Тепловые трубки используют только для отвода тепла в более просторную и холодную часть корпуса компьютера, где возможно установить массивный радиатор, рассеивающий принесенное трубкой тепло. На последних моделях экстремальных материнских плат радиаторы тепловых трубок, охлаждающие чипсет, расположены так, чтобы контактировать с воздухом вне компьютерного корпуса.

В современных компьютерах из-за высокого тепловыделения компонентов охлаждение только с помощью пассивных систем невозможно. Поэтому пассивные системы охлаждения являются неизменными спутниками активных систем и в качестве автономного кулера выступают только в наименее горячих местах.

Достоинства: экономность, надежная работа, безопасность, отсутствие шума

Недостатки: низкая эффективность для современного оборудования

Активная

Воздушное охлаждение (рис. 2) до сих пор остается самым популярным способом борьбы с температурными излишками. Суть этого метода сводится к организации правильного воздушного потока - горячий воздух должен эффективно выводиться за пределы системного блока. Обычно устанавливают один или несколько вентиляторов, которые обеспечивают циркуляцию воздушного потока от передней стенки корпуса к задней. В непродуманной системе воздушного охлаждения может происходить застой воздуха или миграция горячего воздуха от одной комплектующей к другой, а это значит, что система охлаждения превращается в систему нагревания.

Рис. 2. Воздушное охлаждение компьютера

Правило эффективности воздушного охлаждения очень простое: чем интенсивнее поток воздуха, тем лучше отводится тепло от греющихся узлов. Для повышения качества обдува можно использовать один или несколько методов:

Увеличение количества вентиляторов;

Увеличение скорости вращения крыльчатки;

Установка вентиляторов большего диаметра;

Увеличение количества лопастей, а также изменение их формы (т.е. замена существующих вентиляторов на более «продвинутые» модели);

Разработка более эффективной схемы движения воздушных масс;

Устранение препятствий на пути отвода воздуха.

Очень часто эффективность работы вентилятора повышают путем добавления радиатора (пассивной системы охлаждения).

Достоинства: низкая стоимость; простота в установке и обслуживании

Недостатки: основной источник шума в компьютере; скромные, в сравнении с другими активными системами, показатели эффективности; небольшой потенциал для покрытия постоянно возрастающих потребностей в охлаждении.


Системы жидкостного охлаждения

Следующим этапом развития охладительных систем стало использование жидкости для «понижения температуры горячих точек» в системном блоке. В качестве жидкости в таких системах чаще всего применяют дистиллированную воду с добавлением спирта (для борьбы с образованием «зелени») или антифриз. В экстремальных системах охлаждения воду или антифриз заменяют жидким азотом. Жидкостная система охлаждения (рис. 3) состоит из трех компонентов – теплообменника, радиатора и помпы, соединенных при помощи трубок в один замкнутый контур. Теплообменник, он же ватерблок, передает тепло от греющегося элемента потоку жидкости, помпа обеспечивает циркуляцию потока, а в радиаторе происходит охлаждение жидкости. Далее, с другими элементами весь процесс повторяется.

Рис. 3. Жидкостное охлаждение компьютера

Также существуют беспомповые системы водяного охлаждения, работа которых базируется на принципе испарения.

Качество жидкостной системы определяют два ключевых фактора: скорость циркуляции жидкости и эффективность охлаждающей работы радиатора (читай – размеры радиатора).

Достоинства СВО: почти бесшумная работа; высокая эффективность охлаждения, отсутствие передачи тепла от одного узла к другому (как в случае с воздушным охлаждением)

Недостатки СВО: высокая стоимость; сложность установки, большой размер системы, высокая вероятность повреждения ряда ключевых компьютерных компонентов при разгерметизации системы или выходе из строя помпы.

Несмотря на все недостатки подобных систем, они получают все более широкое распространение в связи с перманентным ростом требований к охлаждению новых компьютеров.


Фреоновые установки

Холодильная установка (рис. 4), испаритель которой установлен непосредственно на охлаждаемый компонент. Такие системы позволяют получить отрицательные температуры на охлаждаемом компоненте при непрерывной работе, что необходимо для экстремального разгона процессоров.

Рис. 4. Фреоновая установка

Недостатки:

· Необходимость теплоизоляции холодной части системы и борьбы с конденсатом (это общая проблема систем охлаждения, работающих при температурах ниже температуры окружающей среды);

· Трудности охлаждения нескольких компонентов;

· Повышенное электропотребление;

· Сложность и дороговизна.


Ватерчиллеры

Системы, совмещающие системы жидкостного охлаждения и фреоновые установки (рис. 5).

Рис. 5. Ватерчиллер

В таких системах антифриз, циркулирующий в системе жидкостного охлаждения, охлаждается с помощью фреоновой установки в специальном теплообменнике. Данные системы позволяют использовать отрицательные температуры, достижимые с помощью фреоновых установок для охлаждения нескольких компонентов (в обычных фреонках охлаждение нескольких компонентов затруднено). К недостаткам таких систем относится большая их сложность и стоимость, а также необходимость теплоизоляции всей системы жидкостного охлаждения.



Просмотров