Подвижная часть электродвигателя постоянного. Как устроен и как работает двигатель постоянного тока (ДПТ)

Электрическая машина постоянного тока состоит из статора, якоря, коллектора, щеткодержателя и подшипниковых щитов (рисунок 1). Статор состоит из станины (корпуса), главных и добавочных полюсов, которые имеют обмотки возбуждения. Эту неподвижную часть машины иногда называют индуктором. Главное его назначение - создание магнитного потока. Станина изготавливается из стали, к ней болтами крепятся главные и добавочные полюса, а также подшипниковые щиты. Сверху на станине имеются кольца для транспортирования, снизу - лапы для крепления машины к фундаменту. Главные полюса машины набираются из листов электротехнической стали толщиной 0,5 -1 мм с целью уменьшения потерь, которые возникают из-за пульсаций магнитного поля полюсов в воздушном зазоре под полюсами. Стальные листы сердечника полюса спрессованы и скреплены заклепками.

Рисунок 1 – Машина постоянного тока:
I - вал; 2 - передний подшипниковый щит; 3 - коллектор; 4 - щеткодержатель; 5 - сердечник якоря с обмоткой; б - сердечник главного полюса; 7 - полюсная катушка; 8 - станина; 9 - задний подшипниковый щит; 10 - вентилятор; 11 - лапы; 12 - подшипник

Рисунок 2 – Полюса машины постоянного тока:
а - главный полюс; б - дополнительный полюс; в - обмотка главного полюса; г - обмотка дополнительного полюса; 1 - полюсный наконечник; 2 - сердечник
В полюсах различают сердечник и наконечник (рисунок 2). На сердечник надевают обмотку возбуждения, по которой проходит ток, создавая магнитный поток. Обмотка возбуждения наматывается на металлический каркас, оклеенный электрокартоном (в больших машинах), или размещается на изолированном электрокартоном сердечнике (малые машины). Для лучшего охлаждения катушку делят на несколько частей, между которыми оставляют вентиляционные каналы. Добавочные полюса устанавливаются между главными. Они служат для улучшения коммутации. Их обмотки включаются последовательно в цепь якоря, поэтому проводники обмотки имеют большое сечение.
Якорь машины постоянного тока состоит из вала, сердечника, обмотки и коллектора. Сердечник якоря собирается из штампованных листов электротехнической стали толщиной 0,5 мм и спрессовывается с обеих сторон с помощью нажимных шайб. В машинах с радиальной системой вентиляции листы сердечника собираются в отдельные пакеты толщиной 6-8 см, между которыми делают вентиляционные каналы шириной 1 см. При осевой вентиляции в сердечнике выполняют отверстие для прохождения воздуха вдоль вала. На внешней поверхности якоря имеются пазы для обмотки.

Рисунок 3 – Расположение секции обмотки якоря в пазах сердечника
Обмотка якоря изготавливается из медных проводов круглого или прямоугольного сечения в виде заранее выполненных секций (рисунок 3). Они укладываются в пазы, где тщательно изолируются. Обмотку делают двухслойной: размещают в каждом пазу две стороны разных якорных катушек - одну над другой. Обмотку закрепляют в пазах клиньями (деревянными, гетинаксовыми или текстолитовыми), а лобовые части крепят специальным проволочным бандажом. В некоторых конструкциях клинья не применяют, а обмотку крепят бандажом. Бандаж изготовляют из немагнитной стальной проволоки, которая наматывается с предварительным натяжением. В современных машинах для бандажировки якорей используют стеклянную ленту.
Коллектор машины постоянного тока собирается из клиноподобных пластин холоднокатаной меди. Пластины изолируют одну от другой прокладками из коллекторного миканита толщиной 0,5 - 1 мм. Нижние (узкие) края пластин имеют вырезы в виде "ласточкина хвоста", которые служат для крепления медных пластин и миканитовой изоляции. Коллекторы крепят нажимными конусами двумя способами: при одном из них усилие от зажима передается только на внутреннюю поверхность "ласточкина хвоста", при втором - на "ласточкин хвост" и конец пластины.
Коллекторы с первым способом крепления называют арочными, со вторым - клиновыми. Наиболее распространены арочные коллекторы.
В коллекторных пластинах со стороны якоря при небольшой разнице в диаметрах коллектора и якоря делают выступы, в которых фрезеруют прорези (шлицы). В них укладывают концы обмотки якоря и припаивают оловянистым припоем. При большой разнице в диаметрах припайка к коллектору делается с помощью медных полосок, которые называются "петушками".
В быстроходных машинах большой мощности для предотвращения выпучивания пластин под действием центробежных сил применяют внешние изолированные бандажные кольца.
Щеточный аппарат состоит из траверсы, щеточных пальцев (болтов), щеткодержателей и щеток. Траверса предназначена для крепления на ней щеточных пальцев щеткодержателей, образующих электрическую цепь.
Щеткодержатель состоит из обоймы, в которую помещается щетка, рычага для прижима щетки к коллектору и пружины. Давление на щетку составляет 0,02 - 0,04 МПа.
Для соединения щетки с электрической цепью имеется гибкий медный тросик.
В машинах малой мощности применяют трубчатые щеткодержатели, которые крепят в подшипниковом щите. Все щеткодержатели одной полярности соединяются между собой сборными шинами, которые подключаются к выводам машины.
Щетки (рисунок 4) в зависимости от состава порошка, способа изготовления и физических свойств разделяют на шесть основных групп: угольно-графитовые, графитовые, электрографитовые, медно-графитовые, бронзографитовые и серебряно-графитовые.
Подшипниковые щиты электрической машины служат в качестве соединительных деталей между станиной и якорем, а также опорной конструкцией для якоря, вал которого вращается в подшипниках, установленных в щитах.

Рисунок 4 – Щетки:
а - для машин малой и средней мощности; б - для машин большой мощности; 1 - щеточный канатик; 2 - наконечник
Различают обычные и фланцевые подшипниковые щиты.
Подшипниковые щиты изготовляют из стали (реже из чугуна или алюминиевых сплавов) методом литья, а также сварки или штамповки. В центре щита делается расточка под подшипник качения: шариковый или роликовый. В машинах большой мощности в ряде случаев используют подшипники скольжения.
В последние годы статор двигателей постоянного тока собирают из отдельных листов электротехнической стали. В листе одновременно штампуются ярмо, пазы, главные и добавочные полюса.

В тех приводах, где необходим широкий диапазон регулировки скоростей используется электрический двигатель постоянного тока. Он позволяет с высокой точностью поддерживать скорость вращения и осуществлять необходимые регулировки.

Устройство электродвигателей постоянного тока

В основе работы данного вида двигателей лежит . Если проводник, по которому протекает электрический ток, поместить в магнитное поле, то, согласно , на него будет воздействовать определенная сила.

Когда проводник пересекает магнитные силовые линии, в нем производится наведение электродвижущей силы, направленной в сторону, противоположную движению тока. В результате, получается обратное противодействие. Происходит преобразование электрической мощности в механическую с одновременным нагреванием проводника.

Вся конструкция устройства состоит из якоря и индуктора, между которыми находится воздушный зазор. Индуктор создает неподвижное магнитное поле и включает в себя полюса главные и добавочные, закрепляемые на станине. Обмотки возбуждения располагаются на главных полюсах и создают магнитное поле. Добавочные полюса содержат специальную обмотку, улучшающую условия коммутации.

В состав якоря входит магнитная система. Ее основными элементами являются рабочая обмотка, укладываемая в пазы, отдельные металлические листы и коллектор, с помощью которого к рабочей обмотке подводится постоянный ток.

Коллектор изготавливается в виде цилиндра и насаживается на вал электродвигателя. К его выступам припаиваются концы якорной обмотки. Электрический ток снимается с коллектора при помощи щеток, закрепленных в специальных держателях и зафиксированных в определенном положении.

Основные процессы: пуск и торможение

Каждый двигатель постоянного тока осуществляет два основных процесса пуск и торможение. В самом начале пуска якорь находится в неподвижном состоянии, напряжение и сила, противоположная ЭДС, равны нулю. При незначительном сопротивлении якоря, значение пускового тока превышает номинальное, примерно в 10 раз. Во избежание перегрева обмотки якоря при пуске, применяются специальные пусковые реостаты. При мощности двигателей до 1-го киловатта, осуществляется прямой запуск.

В электродвигателях постоянного тока применяется несколько способов торможения. При динамическом торможении обмотка якоря замыкается коротко, либо с помощью резисторов. Этот способ обеспечивает наиболее точную остановку. Рекуперактивное торможение является наиболее экономичным. Здесь происходит изменение направления ЭДС на противоположное.

Торможение противовключением производится изменением полярности тока и напряжения в якорной обмотке, что позволяет создать эффективный тормозящий момент.

Как работает двигатель постоянного тока

Двигатели постоянного тока предназначены для превращения энергии постоянного тока в механическую работу.

Электродвигатели постоянного тока, намного меньше распространены, нежели двигатели переменного тока. Это связано в первую очередь со сравнительной дороговизной, более сложным устройством, сложностями в обеспечении питания. Но, несмотря на все эти недостатки, ДПТ имеют немало плюсов. Например, двигатели переменного тока , сложно регулировать, ДПТ же отлично регулируются массой способов. Кроме того ДПТ имеют более жесткие механические характеристики и позволяют обеспечить большой пусковой момент.

Электродвигатели постоянного тока применяются в качестве тяговых двигателей, в электротранспорте, в качестве различных исполнительных устройств.

Устройство двигателей постоянного тока

Конструкция двигателя постоянного тока аналогична двигателю переменного тока, но все же имеются существенные различия. На станине 7, которая изготавливается из стали, установлена обмотка возбуждения в виде катушек 6. Между основными полюсами, могут устанавливаться дополнительные полюса 5, для улучшения свойств ДПТ. Внутри устанавливается якорь 4, который состоит из сердечника и коллектора 2, и устанавливается с помощью подшипников 1 в корпус двигателя. Коллектор является существенным отличием от двигателей переменного тока. Он соединяется с щетками 3, что позволяет подавать или в генераторах, наоборот снимать напряжение с якорной цепи.

Принцип действия


Принцип действия ДПТ основан на взаимодействии магнитных полей обмотки возбуждения и якоря. Можно представить, что вместо якоря у нас рамка, через которую протекает ток, а вместо обмотки возбуждения постоянный магнит с полюсами N и S. При протекании постоянного тока через рамку, на нее начинает действовать магнитное поле постоянного магнита, то есть рамка начинает вращаться, причем, так как направление тока не меняется, то и направление вращения рамки остается прежним.

При подаче напряжения на зажимы двигателя начинает протекать ток в обмотке якоря, на него, как мы уже знаем, начинает действовать магнитное поле машины, при этом якорь начинает вращаться, а так как якорь вращается в магнитном поле, начинает образовываться ЭДС. Эта ЭДС направлена против тока, в связи с этим её называют противоЭДС. Её можно найти по формуле

Где Ф – магнитный поток возбуждения, n – частота вращения, а Cе это конструктивный момент машины, который остается для нее постоянным.

Напряжение на зажимах больше чем противоЭДС на величину падения напряжение в якорной цепи.

А если домножить это выражение на ток, то получим уравнение баланса мощностей.

Создающая магнитный поток для образования момента. Идуктор обязательно включает либо постоянные магниты либо обмотку возбуждения . Индуктор может быть частью как ротора так и статора. В двигателе, изображенном на рис. 1, система возбуждения состоит из двух постоянных магнитов и входит в состав статора.

Типы коллекторных электродвигателей

По конструкции статора коллекторный двигатель может быть и .

Схема коллекторного двигателя с постоянными магнитами

Коллекторный двигатель постоянного тока (КДПТ) с постоянными магнитами является наиболее распространенным среди КДПТ. этого двигателя включает постоянные магниты, которые создают магнитное поле статора. Коллекторные двигатели постоянного тока с постоянными магнитами (КДПТ ПМ) обычно используются в задачах не требующих больших мощностей. КДПТ ПМ дешевле в производстве, чем коллекторные двигатели с обмотками возбуждения. При этом момент КДПТ ПМ ограничен полем постоянных магнитов статора. КДПТ с постоянными магнитами очень быстро реагирует на изменение напряжения. Благодаря постоянному полю статора легко управлять скоростью двигателя. Недостатком электродвигателя постоянного тока с постоянными магнитами является то, что со временем магниты теряют свои магнитные свойства, в результате чего уменьшается поле статора и снижаются характеристики двигателя.

    Преимущества:
  • лучшее соотношение цена/качество
  • высокий момент на низких оборотах
  • быстрый отклик на изменение напряжения
    Недостатки:
  • постоянные магниты со временем, а также под воздействием высоких температур теряют свои магнитные свойства

Коллекторный двигатель с обмотками возбуждения

Схема независимого возбуждения

Схема параллельного возбуждения

Схема последовательного возбуждения

Схема смешанного возбуждения

Двигатели независимого и параллельного возбуждения

В электродвигателях независимого возбуждения обмотка возбуждения электрически не связана с обмоткой (рисунок выше). Обычно напряжение возбуждения U ОВ отличается от напряжения в цепи якоря U. Если же напряжения равны, то обмотку возбуждения подключают параллельно обмотке якоря. Применение в электроприводе двигателя независимого или параллельного возбуждения определяется схемой электропривода. Свойства (характеристики) этих двигателей одинаковы .

В двигателях параллельного возбуждения токи обмотки возбуждения (индуктора) и якоря не зависят друг от друга, а полный ток двигателя равен сумме тока обмотки возбуждения и тока якоря. Во время нормальной работы, при увеличении напряжения питания увеличивается полный ток двигателя, что приводит к увеличению полей статора и ротора. С увеличением полного тока двигателя скорость так же увеличивается, а момент уменьшается. При нагружении двигателя ток якоря увеличивается, в результате чего увеличивается поле якоря. При увеличении тока якоря, ток индуктора (обмотки возбуждения) уменьшается, в результате чего уменьшается поле индуктора, что приводит к уменьшению скорости двигателя, и увеличению момента.

    Преимущества:
  • практически постоянный момент на низких оборотах
  • хорошие регулировочные свойства
  • отсутствие потерь магнетизма со временем (так как нет постоянных магнитов)
    Недостатки:
  • дороже КДПТ ПМ
  • двигатель выходит из под контроля, если ток индуктора падает до нуля

Коллекторный электродвигатель параллельного возбуждения имеет с уменьшающимся моментом на высоких оборотах и высоким, но более постоянным моментом на низких оборотах. Ток в обмотке индуктора и якоря не зависит друг от друга, таким образом, общий ток электродвигателя равен сумме токов индуктора и якоря. Как результат данный тип двигателей имеет отличную характеристику управления скоростью. Коллекторный двигатель постоянного тока с параллельной обмоткой возбуждения обычно используется в приложениях, которые требуют мощность больше 3 кВт, в частности в автомобильных приложениях и промышленности. В сравнении с , двигатель параллельного возбуждения не теряет магнитные свойства со временем и является более надежным. Недостатками двигателя параллельного возбуждения являются более высокая себестоимость и возможность выхода двигателя из под контроля, в случае если ток индуктора снизится до нуля, что в свою очередь может привести к поломке двигателя .

В электродвигателях последовательного возбуждения обмотка возбуждения включена последовательно с обмоткой якоря, при этом ток возбуждения равен току якоря (I в = I а), что придает двигателям особые свойства. При небольших нагрузках, когда ток якоря меньше номинального тока (I а < I ном) и магнитная система двигателя не насыщена (Ф ~ I а), электромагнитный момент пропорционален квадрату тока в обмотке якоря:

  • где M – , Н∙м,
  • с М – постоянный коэффициент, определяемый конструктивными параметрами двигателя,
  • Ф – основной магнитный поток, Вб,
  • I a – ток якоря, А.

С ростом нагрузки магнитная система двигателя насыщается и пропорциональность между током I а и магнитным потоком Ф нарушается. При значительном насыщении магнитный поток Ф с ростом I а практически не увеличивается. График зависимости M=f(I a) в начальной части (когда магнитная система не насыщена) имеет форму параболы, затем при насыщении отклоняется от параболы и в области больших нагрузок переходит в прямую линию .

Важно: Недопустимо включать двигатели последовательного возбуждения в сеть в режиме холостого хода (без нагрузки на валу) или с нагрузкой менее 25% от номинальной, так как при малых нагрузках частота вращения якоря резко возрастает, достигая значений, при которых возможно механическое разрушение двигателя, поэтому в приводах с двигателями последовательного возбуждения недопустимо применять ременную передачу, при обрыве которой двигатель переходит в режим холостого хода. Исключение составляют двигатели последовательного возбуждения мощностью до 100-200 Вт, которые могут работать в режиме холостого хода, так как их мощность механических и магнитных потерь при больших частотах вращения соизмерима с номинальной мощностью двигателя.

Способность двигателей последовательного возбуждения развивать большой электромагнитный момент обеспечивает им хорошие пусковые свойства.

Коллекторный двигатель последовательного возбуждения имеет высокий момент на низких оборотах и развивает высокую скорость при отсутствии нагрузки. Данный электромотор идеально подходит для устройств, которым требуется развивать высокий момент (краны и лебедки), так как ток и статора и ротора увеличивается под нагрузкой. В отличии от и двигателей параллельного возбуждения двигатель последовательного возбуждения не имеет точной характеристики контроля скорости, а в случае короткого замыкания обмотки возбуждения он может стать не управляемым.

Двигатель смешанного возбуждения имеет две обмотки возбуждения, одна из них включена параллельно обмотке якоря, а вторая последовательно. Соотношение между намагничивающими силами обмоток может быть различным, но обычно одна из обмоток создает большую намагничивающую силу и эта обмотка называется основной, вторая обмотка называется вспомогательной. Обмотки возбуждения могут быть включены согласовано и встречно, и соответственно магнитный поток создается суммой или разностью намагничивающих сил обмоток. Если обмотки включены согласно, то характеристики скорости такого двигателя располагаются между характеристиками скорости двигателей параллельного и последовательного возбуждения. Встречное включение обмоток применяется, когда необходимо получить неизменную скорость вращения или увеличение скорости вращения с увеличением нагрузки. Таким образом, рабочие характеристики двигателя смешанного возбуждения приближаются к характеристикам двигателя параллельного или последовательного возбуждения, смотря по тому, какая из обмоток возбуждения играет главную роль

Не всякий электрический двигатель можно однозначно назвать способным работать от постоянного тока. Касается коллекторного типа. На нем базируются устройство, принцип работы электродвигателя постоянного тока. Статор состоит из набора обмоток, каждая работает только на ограниченной части дуги хода вала. В противном случае реализовать концепцию невозможно.

Работа коллекторного двигателя

Коллекторный двигателей используется повсеместно бытовой техникой. 90% домашних применений приходится на этот сегмент. Двигатели стиральных машин, пылесосов, электрического инструмента. Исключением, назовем холодильники, вентиляторы, ветродувки, некоторые вытяжки. Вызвано требованиями бесшумности. Каждый, кто слышал, как ездит маленькая машинка от батарейки, понимает. В ночное время слышно каждый шорох, коллекторный двигатель навел бы шороху. Попробуйте включить на одну-две секунды болгарку в шесть часов утра – поймете.

Согласно законодательству в темное время суток уровень звукового давления не превышает 30 дБ. В противном случае техника помешает спокойному сну. Шум вызван трением щеток о коллектор, ротор двигателя сравнительно тяжелый, малейшая несоосность отдается в подшипниках. Люфт есть, массивнее движущаяся часть, акустический эффект заметнее. У коллекторных двигателей предостаточно недостатков, зато могут работать от постоянного тока. Чтобы уменьшить габариты, снижают число катушек. Для однозначного задания направления вращения необходимо минимум три полюса, причем никогда не работают параллельно.

У коллекторного двигателя бытовой техники великое количество полюсов ротора. Ниже упрощенный рисунок для постоянного тока. Коллекторный двигатель работает в схожем режиме, магнитов статора больше, все электрические. Питание ведется переменным напряжением 220 вольт. Подошли к главной тайне! Нет разницы, питать коллекторный двигатель переменным, постоянным током. С точки зрения обывателя. Существуют некоторые особенности:

  1. При питании постоянным током КПД повышается. Подводимая мощность пропорционально снижена, достигая большей эффективности использования. Обмотка статора снабжена не двумя — тремя выводами. При питании постоянным током используется часть витков. Переменный течет через всю катушку статора.
  2. При постоянных полях исчезает эффект перемагничивания. Резко снижает нагрев электротехнической стали магнитопроводов двигателя постоянного тока. Отражается низкими требованиями к изготовлению несущей основы ротора и статора. Можно не разделять магнитопроводы на пластины с изоляцией лаком. Как бы то ни было, большинство коллекторных двигателей постоянного тока одновременно годятся и для работы с переменным. Магнитопроводы составлены пластинами электротехнической стали.
  3. Косвенным плюсом является более высокая стабильность оборотов. Для регуляции скорости вращения на постоянном токе используется изменение амплитуды напряжения, на переменном — при помощи тиристорного ключа отсекается часть синусоиды по линии питания. Последний вариант используется стиральными машинами.
  4. Реверс на переменном токе ведут перекоммутацией обмоток. Изменением направления включения друг относительно друга. Процедуры в стиральной машине выполняют специальные реле. В двигателях постоянного тока полюс статора заменен железным (неодимовым) магнитом. Хватает сменить полярность питания для получения реверса. Операцию можно выполнять при помощи реле или контактора. Если обмотки питаются энергией электричества, для изменения направления вращения вала применяется перекоммутация.

В коллекторном двигателе бытовой техники статор соединяется последовательно ротору. Для передачи энергии на вал используется токосъемник в виде барабана, разделенного секциями. Электродами послужат графитовые щетки с прижимными пружинами. На корпусе выводы статора и ротора разграничены, обеспечивая возможности реализации функции реверса. Среди контактов могут быть вспомогательные: три вывода датчика Холла (два тахометра), окончания термопредохранителя.

По мере кручения вала щетки постепенно переключаются на следующую секцию, полюс ротора сдвигается. Статор остается на прежнем месте. Обратите внимание, полярность меняется с удвоенной частотой сети (50 Гц), характер взаимодействия остается прежним. Одинаковые полюсы отталкиваются, разнородные притягиваются. Путем особого распределения обмотки, коммутации с коллектором обеспечивается нужное направление вращения. Проявляется независимость двигателя от типа питающего напряжения (постоянного или переменного). Некоторые особенности коллекторного оборудования, присущие только данному типу устройств читайте ниже.

По мере движения щеток по барабану возникает искра

Принцип действия

Для гашения искры применяются варисторы

Величина ЭДС вырастает до недопустимого размера, сопротивление защиты в десятки тысяч раз уменьшается, лишний ток закорачивается корпусом. Варисторы используются парно. Объединяют обе щетки через корпус коллекторного двигателя. Вилки пылесосы зачастую лишены клеммы заземление, успешно снабжаются варисторной защитой. Искра замыкается стальным корпусом, ввиду больших размеров, массы разогрев отсутствует. Смертельно опасно браться одной рукой за коллекторный двигатель с такими изысками, другой — хватать заземленные металлические конструкции (пожарные лестницы; водопроводные, канализационные, газовые трубы; шины громоотводов; оплетки антенных кабелей).

Съемные щечки на корпусе

Корпус электроинструмента снабжен съемными щечками, щетки меняются в течение считаных минут. Уберегает от необходимости разбирать прибор для технического обслуживания. Признаком износа щеток выступает сильное искрение. Оборудование поизносилось. Новые щетки при притирании сильно искрят. В случае износа наблюдается падение мощности. Дрель перестает вращать сверло, останавливается барабан стиральной машины при номинальной массе загруженного белья. Не всегда удается достать оригинальные щетки, комплектующие можно подточить до необходимых размеров шлифовальным инструментом.

Искрение оборотов, срыв

Искрение, срыв оборотов наблюдаются при загрязнении барабана. Ротор вынимается, проводится чистка подходящим средством (спиртом).

Устройство электродвигателя постоянного тока не отличается от моделей, работающих под переменным напряжением. Вышесказанное касается любого типа оборудования.

Работа электродвигателя постоянного тока

Под токосъемником простейшего двигателя две секции. Выродился барабан коллектора. Каждая контактная ламель (пластинка на валу) занимает половину оборота. Одна щетка снабжается положительным потенциалом, вторая — отрицательным, сообразно меняется направление магнитного поля полюсов. Активными в каждый момент времени являются два (в описанной выше конструкции). Статора может формироваться постоянным электрическим полем, либо металлическим магнитом. Последнее применяется детскими машинками.

Как работает электродвигатель постоянного тока. Допустим, в начальный момент времени обмотки расположены так, как показано на рисунке. В нашем примере полюсов уже не два, как обсуждали выше, — три. Минимальное число для стабильного запуска электрического двигателя постоянного тока в нужном направлении. Обмотки соединены схемой звезды, у каждой пары одна общая точка. Напряженность поля формирует два полюса отрицательных, один положительный. Постоянный магнит стоит, как показано рисунком.

Упрощенный рисунок случая постоянного тока

Каждую треть оборота происходит перераспределение поля так, что полюса сдвигаются согласно изменению напряжения питания на ламелях. На второй эпюре видим: номера обмоток сдвинулись, картина в пространстве осталась. Залог стабильности: один полюс притягивается к постоянному магниту, второй отталкивается. Если нужно получить реверс, меняется полярность подключения батарейки (аккумулятора). В результате получается два положительных полюса, один отрицательный. Вал станет двигаться против часовой стрелки.

Полагаем, принцип действия электродвигателя постоянного тока теперь понятен. Добавим, сегодня распространены двигатели вентильного типа. Многие задумались заставить поля чередоваться на статоре, ротор представлял бы постоянный магнит. В первом приближении двигатель вентильного типа. Постоянный ток подается на нужные обмотки статора через коммутируемые ключи-тиристоры. В результате создается нужное распределение поля.

Преимущества схемы в снижении количества трущихся частей, являющихся причиной необходимости обслуживания, ремонта. Тиристорный блок управления достаточно сложный. Допускается организовать коммутацию при помощи ламелей. Одновременно конструкция послужит грубым датчиком положения вала (плюс минус расстояние между контактными площадками оси вала). Вентильные двигатели не новы. Широко применяются специфическими отраслями. Помогают точно выдержать частоту вращения. В быту вентильные двигатели найти сложно. Некое подобие можно лицезреть в стиральной машине. Речь о помпе слива воды (ротор магнитный, только ток переменный).

Технические характеристики электродвигателей постоянного тока лучше, нежели при питании переменным током. Класс устройств широко применяется. Чаще электродвигатели постоянного тока используются при питании батареями различного рода. Когда нет выбора. Преимущества схемы питания позволят аккумуляторам дольше продержаться.

Обмотки статора, ротора включают последовательно, параллельно. Последнее применяется при нагруженном в исходном состоянии валу. Наблюдается резкое повышение оборотов, может привести к негативным последствиям, если ротор слишком легко идет. Упоминали о подобных тонкостях в теме конструирования двигателей своими руками.



Просмотров