Что означает света светофора. Сигналы светофора и регулировщика, виды светофоров Skip to content. Штраф за проезд на запрещающий знак

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Функциональная организация персонального компьютера. Центральный процессор. Контролеры периферийных устройств. Структура и функции системной шины. Периферийные устройства (устройства ввода-вывода и т.д.). Принцип подключения периферийных устройств к системной шине

1.1 Состав и назначение основных элементов персонального компьютера

1.2 Внешние запоминающие устройства

1.3 Устройства ввода/вывода данных

1.4 Контроллеры периферийных устройств

1.5 Принципы подключения периферийных устройств

2. Модели решения функциональных и вычислительных задач. Классификация видов моделирования. Математические модели. Информационные модели. Понятие алгоритма и его свойства. Способы описания алгоритмов. Основные алгоритмические конструкции

2.1 Классификация моделей. Математические модели

2.2 Информационные модели

2.3 Понятие алгоритма и его свойства

2.4 Способы описания алгоритмов

2.5 Базовые управляющие структуры алгоритмов (основные алгоритмические конструкции)

Практическая часть

Литература

1. Функциональная организация персонального компьютера. Центральный процессор. Контролеры периферийных устройств. Структура и функции системной шины. Периферийные устройства (устройства ввода-вывода и т.д.). Принцип подключения периферийных устройств к системной шине

1.1 Состав и назначение основных элементов персонального компьютера

Центральный процессор

Центральный процессор (ЦП) - функционально-законченное программно-управляемое устройство обработки информации, выполненное на одной или нескольких СБИС. В современных ПК разных фирм применяются процессоры двух основных архитектур:

· Полная система команд переменной длины - Complex Instruction Set Computer (CISC);

· Сокращенный набор команд фиксированной длины - Reduced Instruction Set Computer (RISC).

Наиболее сложным функциональным устройством процессора является устройство управления выполнением команд. Оно содержит:

· Буфер команд , который хранит одну или несколько очередных команд программы; читает следующие команды из запоминающего устройства, пока выполняется очередная команда, уменьшая время ее выборки из памяти;

· Дешифратор команд расшифровывает код операции очередной команды и преобразует его в адрес начала микропрограммы, которая реализует исполнение команды;

· Управление выборкой очередной микрокоманды представляет собой небольшой процессор, работающий по принципу фон Неймана, имеет свой счетчик микрокоманд, который автоматически выбирает очередную микрокоманду из ПЗУ микрокоманд;

· Постоянное запоминающее устройство (ПЗУ) микрокоманд - это запоминающее устройство, в которое информация записывается однократно и затем может только считываться; отличительной особенностью ПЗУ является то, что записанная в него информация сохраняется сколь угодно долго и не требует постоянного питающего напряжения.

Выборка очередной микрокоманды осуществляется через определенный интервал времени, который зависит от времени выполнения предыдущей микрокоманды. Частота, с которой осуществляется выборка микрокоманд, называется тактовой частотой процессора. Тактовая частота является важной характеристикой процессора, так как определяет скорость выполнения процессором команд, и, в конечном итоге, быстродействие процессора. компьютер процессор контролер

Арифметико-логическое устройство (АЛУ) предназначено для выполнения арифметических и логических операций преобразования информации. Функционально АЛУ состоит из нескольких специальных регистров, полно разрядного сумматора и схем местного управления. В основе АЛУ лежит устройство, реализующее арифметическую операцию. Сложения двух целых чисел. Остальные арифметические операции реализуются с помощью представления чисел в специальном дополнительном коде. Сумматор АЛУ - это много разрядное устройство, каждый разряд которого представляет собой схему на логических элементах, выполняющих суммирование двух одноразрядных двоичных чисел с учетом переноса из предыдущего младшего разряда (полусумматор). Результатом является сумма входных величин и перенос в следующий старший разряд. Такое функциональное устройство называется одноразрядным, полным сумматором.

Регистры общего назначения (РОН) используются для временного хранения операндов исполняемой команды и результатов вычислений, а также хранят адреса ячеек памяти или портов ввода-вывода для команд, обращающихся к памяти и внешним устройствам. Если операнды хранятся в РОН, то время выполнения команды значительно сокращается.

Внутренние запоминающие устройства: оперативное запоминающее устройство, кэш-память, постоянное запоминающее устройство . Другим важным функциональным узлом компьютера является запоминающее устройство, или память. Память, в которой хранятся исполняемые программы и данные, называется оперативным запоминающим устройством (ОЗУ), или RAM (Random Access Memory) - памятью со свободным доступом. ОЗУ позволяет записывать и считывать информацию из ячейки, обращаясь к ней по ее номеру или адресу. Ячейка памяти имеет стандартное число двоичных разрядов - один байт. Информация в ОЗУ сохраняется все время, пока на схемы памяти подается питание, т.е. она является энергозависимой.

Существует два вида ОЗУ, отличающиеся техническими характеристиками: динамическое ОЗУ, или DRAM (Dynamic RAM), и статическое ОЗУ, или SRAM (Static RAM). Быстродействие динамического ОЗУ на порядок ниже, чем статического. Обычно, в качестве оперативной или видеопамяти используется динамическое ОЗУ. Статическое ОЗУ используется в качестве небольшой буферной сверхбыстродействующей памяти. В кэш - память из динамической памяти заносятся команды и данные, которые процессор будет выполнять в данный момент.

Скорость работы ОЗУ ниже, чем быстродействие процессора, поэтому применяются различные методы для повышения ее производительности. Например, размещение в одном корпусе микросхемы СБИС нескольких модулей памяти с чередованием адресов.

Для уменьшения влияния времени обращения процессора к ОЗУ и увеличения производительности компьютера дополнительно устанавливается сверхбыстродействующая буферная память, выполненная на микросхемах статической памяти. Эта память называется кэш-памятью (от анг. Cache - запас). Время обращения к данным в кэш-памяти на порядок ниже, чем ОЗУ, и сравнимо со скоростью работы самого процессора. Современные процессоры имеют встроенную кэш-память, которая находится внутри процессора, кроме этого есть кэш-память и на системной плате. Чтобы их различать, она делится на уровни. На кристалле самого процессора находится кэш-память первого уровня, она имеет объем порядка 16-128 Кбайт и самую высокую скорость обмена данными. В корпусе процессора, но на отдельном кристалле находится кэш-память второго уровня, которая имеет объем порядка 256 Кбайт - 2 Мбайта. Кэш-память третьего уровня расположена на системной плате, ее объем может составлять 16 - 1000 Мбайт.

Использование процессом кэш-памяти увеличивает производительность процессора, особенно в тех случаях, когда происходит последовательное преобразование относительно небольшого числа данных, которые постоянно во время преобразования хранятся в кэш-памяти.

В одном адресном пространстве с ОЗУ находится специальная память, предназначенная для постоянного хранения таких программ, как тестирование и начальная загрузка компьютера, управление внешними устройствами. Она является энергонезависимой, т.е. сохраняет записанную информацию при отсутствии питания. Такая память называется постоянным запоминающим устройством (ПЗУ) или ROM (Read Only Memory). Постоянные запоминающие устройство можно разделить по способу записи с них информации на следующие категории:

ПЗУ, программируемые однократно. Программируются при изготовлении и не позволяют изменять записанную в них информацию.

Перепрограммируемые ПЗУ (ППЗУ). Позволяют перепрограммировать их многократно. Изменение содержания ППЗУ можно выполнять как непосредственно в составе вычислительной системы (такая технология называется флэш - технологией), так и вне ее, на специальных устройствах, называемых программаторами.

Внутренние шины

Общая шина , наряду с центральным процессором и запоминающим устройством, во многом определяет производительность работы компьютера, так как обеспечивает обмен информацией между функциональными узлами. Общая шина делится на три отдельные шины по типу передаваемой информации: шина адреса, шина данных, шина управления. Каждая шина характеризуется: шириной - числом параллельных проводников для передачи информации; тактовой частотой - частотой, на которой работает контроллер шины при формировании циклов передачи информации.

Шина адреса предназначена для передачи адреса ячейки памяти или порта ввода-вывода. Ширина шины адреса определяет максимальное количество ячеек, которое она может напрямую адресовать. Если ширина шины адреса n, то количество адресуемой памяти равно 2 n .

Шина данных предназначена для передачи команд и данных, и ее ширина во многом определяет информационную пропускную способность общей шины. В современных компьютерах ширина шины данных составляет 32 - 64.

Шина управления включает в себя все линии, которые обеспечивают работу общей шины. Ее ширина зависит от типа шины и определяется алгоритмом ее работы или протоколом работы шины. Протокол работы шины состоит из нескольких циклов и выполняется контроллером шины, расположенным внутри процессора, или отдельным контроллером шины.

Разработчики предлагают включать в состав компьютера дополнительные шины, связывающие напрямую центральный процессор и отдельные наиболее быстродействующие устройства. Такие шины получили название локальных шин. Локальные шины используются для подключения к процессору запоминающего устройства и видеоконтроллера.

Основные характеристики общих и локальных шин, применяемых в ПК фирмы IBM .

Общая шина PCI применяется в настольных компьютерах, в настоящее время используется модификация PCI 2/1/ Тактовая частота контроллера этой шины 66 МГц, ширина шины адреса - 32, а шины данных - 64 разряда. Пиковая пропускная способность шины 528 Мбайт/с.

Общая шина PCMCIA применяется в переносных компьютерах класса ноутбук и имеет параметры, сравнимые с параметрами шины PCI/

Локальная шина для подключения видеоконтроллера AGP позволяет организовать непосредственную связь видеоконтроллера и оперативного запоминающего устройства. Она ориентирована на массовую передачу видеоданных. Имеет конвейерную организацию выполнения операций чтения/записи, что позволяет избежать задержек при обращении к модулям памяти. За один такт работы может передать два, четыре или восемь блоков данных, в зависимости от установленного режима работы. При установке режима параллельной передачи восьми блоков обеспечивает пиковую скорость передачи 2112 Мбайт/с.

1.2 Внешние запоминающие устройства

В отличие от оперативного запоминающего устройства, внешние запоминающие устройства (ВЗУ) обладают большим объемом сохраняемой информации и являются энергонезависимыми. Наибольшее распространение получили дисковые ВЗУ, которые, в зависимости от типа носителя, можно разделить на магнитные, оптические и смешанные.

Магнитные диски используют магнитные материалы со специальными свойствами, позволяющими фиксировать два состояния. Информация на магнитные диски записывается и считывается магнитной головкой, которая перемещается радиально с фиксированным шагом, а сам диск при этом вращается вокруг своей оси. Головка считывает или записывает информацию, расположенную на концентрической окружности, которая называется дорожкой или треком . Каждая дорожка дополнительно разбивается на ряд участков - секторов. Сектор содержит минимальные блок информации, который может быть записан или считан с диска. Чтение и запись на диск осуществляется блоками, поэтому дисководы называют блочными устройствами.

Физическая структура диска определяется количеством дорожек и числом секторов на каждой дорожке. Она задается при форматировании диска, которое выполняется специальными программами и должна быть произведена перед первым использованием диска для записи информации.

Кроме физической структуры диска, говорят еще о логической структуре . Логическая структура определяется файловой системой, которая реализована на диске и зависит от операционной системы компьютера, на котором используется данный диск.

Накопители на оптических дисках

Оптический компакт-диск, который был предложен в 1982 г. фирмами Philips и Sony первоначально для записи звуковой информации, идеально подходил для записи цифровой информации больших объемов на сменном носителе. Объем информации, записанной на компакт-диске, составляет 600-700 Мбайт. К достоинствам можно отнести и его относительную дешевизну, высокую надежность и долговечность, нечувствительность к загрязнению и воздействию магнитных полей. В середине 90-х гг. появились устройства, устанавливаемые непосредственно на компьютере и позволяющие производить однократную запись информации на компакт-диск. Для таких устройств выпускают специальные компакт-диски, которые получили название CD- Recodable (CD-R).

Позднее появились компакт-диски с возможностью перезаписи - CD-ReWritable (CD-RW).

Дальнейшее развитие технологии производства компакт-дисков привело к созданию дисков с высокой плотностью записи - цифровой универсальный диск Digital Versatile Disk (DVD). Объем записываемой информации на диске достигает 4,7 Гбайт. Дальнейшее увеличение объема информации обеспечивается применением двусторонних DVD.

Флэш-память .

К недостаткам дисковой памяти можно отнести наличие механических движущихся компонентов, имеющих малую надежность, и большую потребляемую мощность при записи и считывании. Появление большого числа цифровых устройств (МР3-плееры, цифровые фото- и видеокамеры, карманные компьютеры) потребовало разработки миниатюрных устройств внешней памяти, обладающих малой энергоемкостью, значительной емкостью и обеспечивали бы совместимость с персональными компьютерами. Первые промышленные образцы такой памяти появились в 1994 г. и получили название флэш-память.

Флэш-память представляет собой микросхему перепрограммируемого постоянного запоминающего устройства (ППЗУ) с неограниченным числом циклов перезаписи. Конструктивно флэш-память выполняется в виде отдельного блока, содержащего микросхему флэш-памяти и контроллер, для подключения к одному из стандартных входов компьютера. Размеры этого блока 40 х 16 х 7 мм. Флэш-память, используемая в других цифровых устройствах, имеет иные размеры и конструктивное оформление. В настоящее время объем флэш-памяти достигает нескольких Гбайт, скорость записи и считывания составляют десятки Мбайт/с.

1.3 Устройства ввода/вывода данных

Видеотерминалы

Видеотерминалы предназначены для оперативного отображения текстовой и графической информации в целях визуального восприятия ее пользователей. Видеотерминал состоит из видеомонитора (дисплея) и видеоконтроллера.

Для ПК используются мониторы следующих типов:

На основе электроннолучевой трубки (ЭЛТ);

На основе жидкокристаллических индикаторов (ЖКИ, LCD - Liguid Crystal Display);

Плазменные мониторы (PDP - Plasma Display Panels);

Электролюминесцентные мониторы (FED - Field Emission Display);

Самоизлучающие мониторы (LEP - Light Emission Plastics).

Основные характеристики мониторов:

Размер экрана монитора - задается величиной диагонали в дюймах. Домашние ПК оснащаются мониторами с размерами 15 или 17 дюймов, а для профессиональной работы, требующей отображения мелких деталей, используются мониторы с размерами 21 и 22 дюйма.

Разрешающая способность - определяется числом пикселей (световых точек) по горизонтали и вертикали. Стандартные значения разрешающей способности современных мониторов следующие: 800 х 600, 1024 х 768, 1800 х 1440, 2048 х 1536 и др. Значение разрешающей способности определяет качество изображения на экране.

Рабочая частота кадровой развертки - определяет скорость смены кадров изображения. Она влияет на утомляемость глаз при продолжительной работе на компьютере. Чем выше частота кадровой развертки, тем меньше утомляемость глаз. Частота смены кадров во многом зависит от разрешающей способности экрана: чем выше разрешающая способность, тем меньше частота смены кадров. Например, при разрешении 800 х 600 максимальная частота смены кадров может составить 120 Гц, а при разрешении 1600 х 1200 - 67 Гц. На разрешающую способность монитора и качество изображения влияет объем видеопамяти . Современные видеоконтроллеры для хранения цвета каждого пикселя расходуют 4 байт памяти, для чего необходимо иметь объем видеопамяти от 32 до 128 Мбайт. Больший объем видеопамяти позволяет устанавливать более высокий режим разрешения и большее число цветов для каждого пикселя.

Мониторы на основе ЭЛТ используют электроннолучевые трубки, применяемые в обычный телевизионных приемниках, и устройство, формирующее на экране точки (пиксели). Для цветных мониторов цвет точки создается смещением тех основных цветов (красного, зеленого и синего) и зависит от интенсивности каждого электронного луча. Цветной монитор может отображать до 16 млн. оттенков в каждой точке.

Мониторы на жидкокристаллических индикаторах представляют собой плоские панели. Эти мониторы используют специальную, прозрачную жидкость, которая при определенных напряжениях электростатического поля кристаллизируется, при этом изменяется ее прозрачность и коэффициент преломления световых лучей. Эти эффекты используются для формирования изображения. Эти мониторы имеют лучшую яркость и предоставляют возможность смотреть на экран даже с отклонением до 45 о от вертикали.

В плазменных мониторах изображение формируется светом, выделяемым при газовом разряде в каждом пикселе экрана. Большими преимуществами таких мониторов являются высокая яркость и контрастность, отсутствие дрожания изображения, а также большой угол отклонения от нормали, при котором изображение сохраняет высокое качество. К недостаткам можно отнести недостаточную пока разрешающую способность и достаточно быстрое (пять лет при офисном использовании) ухудшение качества люминофора. Пока такие мониторы используют только для конференций и презентаций.

Электролюминесцентные мониторы состоят из двух пластин, с ортогонально нанесенными на них прозрачными проводниками. На одну из пластин нанесен слой люминофора, который начинает светится при подаче напряжения на проводники в точке их пересечения, образуя пиксель.

Самоизлучающие мониторы используют матрицу пикселей, построенную на основе полупроводникового материала, излучающего свет при подаче на него напряжения (светодиод). На сегодняшний день имеются монохромные самоизлучающие дисплеи с желтым свечением, но они уступают по сроку службы LCD мониторам. Достоинства таких мониторов заключаются в том, что они обеспечивают 180-градусный обзор, работают при низком напряжении питания и имеют малый вес.

Устройства ввода информации

Клавиатура. Клавиатурой называется устройство для ручного ввода информации в компьютер. Современные типы клавиатур различаются, в основном, принципом формирования сигнала при нажатии клавиши.

Среди современных типов клавиатур можно отметить беспроводную, в которой передача информации в компьютер происходит с помощью датчика инфракрасного излучения, аналогично пультам управления различной бытовой техники. Такая клавиатура позволяет работать в любом удобном для пользователя месте, не привязываясь к расположению системного блока. Можно также отметить гибкую резиновую клавиатуру, которая работает бесшумно, защищена от механических и химических разрушающих воздействий, очень тонкая и может быть свернута в виде цилиндра.

Клавиатурный процессор, который обрабатывает сигналы от клавиатуры, определяет номер клавиши, которая была нажата, так называемый скан-код, а сервисные программы операционной системы определяют, какой именно символ или команда были введены. Такой подход позволяет сопоставлять каждой клавише больше одного символа.

Манипулятор типа «мышь». В качестве дополнительных устройств для ручного ввода информации наиболее широко используются устройства графического ввода типа «мышь» и устройства для ввода информации в игровые программы - джойстики.

Манипулятор «мышь» представляет необходимое средство для работы с компьютером. Мышь представляет собой электронно-механическое устройство, внешний вид которой и принцип действия весьма разнообразны. Наиболее популярные типы мыши, применяемые в настольных компьютерах, имеют вид небольшой коробочки, сверху которой находятся две кнопки управления командами мыши и колесико скроллинга, применяемого для прокрутки информации в некоторых приложениях. На нижней части находится механическое или электронное устройство, отслеживающее перемещение мыши по поверхности. В портативных компьютерах мышь вмонтирована в его корпус и представляет собой площадку с сенсорами, которые отслеживают движение пальца по площадке и силу его давления и перемещают курсор по экрану или, при более сильном нажатие, выполняют команду. Такие устройства получили название трекпоинты или трекпады. Выпускаются мыши, передающие информацию в компьютер по инфракрасному каналу. У таких мышей отсутствует «хвостик», связывающий ее с компьютером, из-за которого она и получила свое имя.

Джойстик. Манипулятор типаявляется основным устройство для управления многочисленными компьютерными играми. Простейший джойстик представляет собой основание с укрепленной на нем рукояткой, на которой размещены четыре кнопки и двухпозиционный курок. Функции всех кнопок и положения рукоятки программируются и для разных игр могут иметь разные действия. Джойстики обеспечивают больший контроль над игрой и значительно полнее передают реальную игровую ситуацию. Для подключения джойстика используется стандартный вход, размещаемый обычно на разъеме звуковой карты, или другой стандартный вход компьютера.

Устройства печати

Существует несколько типов устройств, обеспечивающих получение твердой копии электронного документа на бумаге или другой материале. Наиболее распространены два типа таких устройств: принтеры и плоттеры.

Печатающие устройства (принтеры) предназначены для вывода информации на бумагу. Все принтеры могут выводить текстовую информацию, многие из них могут выводить также рисунки и графики, а некоторые принтеры могут выводить и цветные изображения. Существует несколько тысяч моделей принтеров, которые могут использоваться с IBM PC. Как правило, применяются принтеры следующих типов: матричные, струйные и лазерные, однако встречаются и другие (светодиодные, термопринтеры и т.д.).

Основной характеристикой принтера, определяющей качество бумажного документа, является разрешающая способность, измеряющаяся числом элементарных точек, которые помещаются на одном дюйме. Чем выше разрешающая способность, тем точнее воспроизводятся детали изображения. Современные принтеры обеспечивают разрешение от 200 до 2880 dpi.

Еще одной важной характеристикой является производительность принтера, которая измеряется количеством страниц, изготовляемых принтером в минуту. Обычно производительность указывается для страниц формата А4.

Плоттеры . Плоттеры, или графопостроители, используются, в основном, для вывода графической информации - чертежи, схемы диаграммы и т.п. Основное достоинство заключается в том, что они предназначены для получения изображения на бумаге большого формата, например, А1.

Плоттеры делятся два больших класса: векторные и растровые. В векторных плоттерах пишущих узел перемещается относительно бумаги сразу по вертикали и горизонтали, вычерчивая на бумаге непрерывные кривые в любом направлении. В растровых - пишущий узел перемещается относительно бумаги только в одном направлении. Изображение формируется строка за строкой из последовательности точек.

Векторные плоттеры используют для рисования узел, который называется пером. В качестве пера, используются перья с чернилами, фибровые и пластиковые стержни (фломастеры), карандашные грифели и мелки или шариковые узлы однократного и многократного действия. Перьевые плоттеры обеспечивают высокое качество изображений, но имеют невысокую скорость работы. Постепенно перьевые и шариковые узлы плоттеров вытесняются струйными узлами, аналогичными узлам струйных принтеров.

Растровые плоттеры могут иметь струйный или лазерный пишущий узел. Их основное отличие от принтеров с подобным принципом работы в ширине обрабатываемого изображения.

Сканеры.

Сканеры являются наиболее распространенными устройства для решения задачи перевода бумажных документов в электронные копии. Их можно классифицировать по целому ряду признаков. Прежде всего, сканеры бывают черно-белые и цветные.

Важной характеристикой сканеров является разрешающая способность, измеряющаяся количеством различаемых точек на дюйм изображения, и составляет от 75 до 1600 dpi. Для нормального распознавания образов, в частности, текстов, вполне достаточно 300-600 dpi. Разрешение необходимо выбирать индивидуально для каждого конкретного использования сканируемого изображения.

Увеличение разрешения резко увеличивает размер файла.

Конструктивно сканеры делятся на три типа: ручные, планшетные и роликовые.

1.4 Контроллеры периферийных устройств

Для управления работой устройств в компьютерах используются электронные схемы - контроллеры .

Контроллер -- это электронное устройство, предназначенное для подключения к магистрали компьютера разных по принципу действия, интерфейсу и конструктивному исполнению периферийных устройств.

К термину "контроллер" очень близок по смыслу другой термин -- "адаптер". Назначение обоих одинаково, но контроллер несколько сложнее: "подразумевается его некоторая активность -- способность к самостоятельным действиям после получения команд от обслуживающей его программы. Сложный контроллер может иметь в своем составе и собственный процессор"". На уровне рядового пользователя данные понятия практически неразличимы и могут считаться синонимами.

Еще одним похожим устройством является сопроцессор. Сопроцессоры "помогают" основному (центральному) процессору, который исполняет программу, реализовывать сложные специфические функции. Примером может служить графический сопроцессор, выполняющий геометрические построения и обработку графических изображений, -- его вполне можно считать графическим контроллером. Несколько особняком стоит математический сопроцессор, который выполняет свои функции "в одиночку", не управляя никакими внешними устройствами.

Все перечисленные выше устройства служат для уменьшения нагрузки на центральный процессор и повышают общую производительность системы. Значение контроллеров состоит в том, что они освобождают процессор от наиболее медленных функций ввода/вывода информации. Идеи применения специализированных интеллектуальных схем для разгрузки центрального процессора были наложены еще в третьем поколении ЭВМ в больших машинах коллективного пользования IBM-36O (в СССР данное семейство машин известно в качестве "аналога" под именем ЕС ЭВМ). В четвертом поколении возникла технологическая возможность собирать схемы управления в едином кристалле, и появились микроконтроллеры.

В состав контроллера, как правило, входят: собственный микропроцессор, ОЗУ, ПЗУ, регистры внешних устройств (через них контроллер взаимодействует с центральным процессором), буферные (согласующие) схемы. В определенном смысле сложный контроллер является упрощенной специализированной ЭВМ.

Для работы ПК, необходимо чтобы в его ОЗУ находилась программа и данные. Попадают они в ОП из различных устройств - клавиатуры, дисков и т.д. Обычно эти устройства называются внешними, хотя некоторые из них находятся внутри системного блока. Результаты выполнения программ также выводятся на внешние устройства - монитор, диски, принтер. Таким образом для работы ПК необходим обмен информацией между ОП и внешними устройствами. Такой обмен называется вводом / выводом. Для этого существуют два звена.

1. Для каждого внешнего устройства в ПК имеется электронная схема которая им управляет. Эта схема называется контроллером или адаптером.

2. Все контроллеры взаимодействуют с МП и ОЗУ через системную магистраль передачи данных, которую называют шиной. Все компоненты ПК подключаются к шине при помощи разъемов расширения системы - слотов.

1.5 Принципы подключения периферийных устройств

Все периферийные устройства подключаются только к системному блоку. Для работы конкретного устройства в составе конкретного комплекта ПЭВМ необходимо иметь:

1. Контроллер (адаптер) - специальную плату, управляющую работой конкретного периферийного устройства. Например, контроллер клавиатуры, мыши, адаптер монитора, портов и т.п.

2. Драйвер - специальное программное обеспечение, управляющее работой конкретного периферийного устройства. Например, драйвер клавиатуры, драйвер принтера и т.п.

Различные устройства используют разные способы подключения к контроллерам:

· некоторые устройства (дисковод для дискет, клавиатура и т. д.) подключаются к имеющимся в составе компьютера стандартным контроллерам (интегрированным или встроенным в материнскую плату);

· некоторые устройства (звуковые карты, многие факс-модемы и т. д.) выполнены как электронные платы, т. е. смонтированы на одной плате со своим контроллером;

· некоторые устройства используют следующий способ подключения: в системный блок компьютера вставляется электронная плата (контроллер), управляющая работой устройства, а само устройство подсоединяется к этой плате кабелем;

· на сегодняшний день большинство внешних устройств подключаются к компьютеру через USB-порт.

Платы контроллеров вставляются в специальные разъемы (слоты) на материнской плате компьютера.

С помощью добавления и замены плат контроллеров пользователь может модифицировать компьютер, расширяя его возможности и настраивая его по своим потребностям. Например, пользователь может добавить в компьютер факс-модем, звуковую карту, плату приема телепередач и т. д.

Одним из видов контроллеров, которые присутствуют почти в каждом компьютере, является контроллер портов ввода-вывода. Часто этот контроллер интегрирован в состав материнской платы. Контроллер портов ввода-вывода соединяется кабелями с разъемами на задней стенке компьютера, через которые к компьютеру подключаются принтер, мышь и некоторые другие устройства.

Кроме контроллеров портов ввода-вывода в системном блоке присутствуют разъемы шины USB - универсальной последовательной шины, к которой можно подключить клавиатуру, мышь, принтер, модем, дисковод компакт-дисков, сканер и т. д. Основное требование возможность подключения к данной шине устройства. Особенность шины USB - возможность подключения к ней устройств во время работы компьютера (не выключая его).

В отличие от внутренних компонентов, для установки периферийных устройств не нужно открывать корпус.

2. Модели решения функциональных и вычислительных задач. Классификация видов моделирования. Математические модели. Информационные модели. Понятие алгоритма и его свойства. Способы описания алгоритмов. Основные алгоритмические конструкции

2.1 Классификация моделей. Математические модели

В зависимости от характера изучаемых процессов в системе и цели моделирования существует множество типов моделей и способов их классификации, например, по цели использования, наличию случайных воздействий, отношению ко времени, возможности реализации, области применения и др. (табл.).

Классификация видов моделей

По способу отражения свойств объекта (по возможности реализации)

использования

По наличию

воздействий на систему

отношению

ко времени

применения

Реальные (натурные, физические).

Мысленные (наглядные, символические, математические).

Информационные

Научный эксперимент.

Комплексные испытания и производственный эксперимент.

Оптимизационные модели

Детерминированные.

Стохастические

Статические.

Динамические (дискретные, непрерывные)

Универсальные.

Специализированные

По способу отражения свойств объекта (по возможности реализации) модели классифицируются на предметные (реальные, материальные) и абстрактные (мысленные, информационные - в широком смысле). В узком смысле под информационными понимаются абстрактные модели, реализующие информационные процессы (возникновение, передачу, обработку и использование информации) на компьютере.

Предметные модели представлены реальными объектами, воспроизводящими геометрические, физические и другие свойства моделируемых систем в материальной форме (глобус, манекен, макет, муляж, каркас и др.).

Реальные модели делят на натурные (проведение исследования на реальном объекте и последующая обработка результатов эксперимента с применением теории подобия) и физические (проведение исследования на установках с аналогичными изучаемому процессами, которые сохраняют природу явления и обладают физическим подобием).

Абстрактные модели позволяют представлять системы, которые трудно или невозможно моделировать реально, в образной или знаковой форме. Образные или наглядные модели (рисунки, фотографии) представляют собой наглядные зрительные образы, зафиксированные на материальном носителе информации (бумага, плёнка).

Знаковые или символьные модели представляют основные свойства и отношения моделируемого объекта с использованием различных языков (знаковых систем), например, географические карты. Вербальные модели - текстовые - используют для описания объектов средства естественного языка. Например, правила дорожного движения, инструкция к прибору.

Математические модели - широкий класс знаковых моделей, использующих математические методы представления (формулы, зависимости) и получения исследуемых характеристик реального объекта.

Назовём некоторые разновидности математических моделей:

Дескриптивные (описательные) - констатируют фактическое положение дел, без возможности влияния на моделируемый объект.

Оптимизационные - дают возможность подбирать управляющие параметры. Игровые - изучают методы принятия решений в условиях неполной информации.

Имитационные - подражают реальному процессу.

По цели использования модели классифицируются на научный эксперимент , в котором осуществляется исследование модели с применением различных средств получения данных об объекте, возможности влияния на ход процесса с целью получения новых данных об объекте или явлении; комплексные испытания и производственный эксперимент , использующие натурное испытание физического объекта для получения высокой достоверности о его характеристиках; оптимизационные , связанные с нахождением оптимальных показателей системы (например, нахождение минимальных затрат или определение максимальной прибыли).

По наличию случайных воздействий на систему модели делятся на детерминированные (в системах отсутствуют случайные воздействия) и стохастические (в системах присутствуют вероятностные воздействия). Эти же модели некоторые авторы классифицируют по способу оценки параметров системы: в детерминированных системах параметры модели оцениваются одним показателем для конкретных значений их исходных данных; в стохастических системах наличие вероятностных характеристик исходных данных позволяет оценивать параметры системы несколькими показателями.

По отношению ко времени модели разделяют на статические , описывающие систему в определённый момент времени, и динамические , рассматривающие поведение системы во времени. В свою очередь, динамические модели подразделяют на дискретные , в которых все события происходят по интервалам времени, и непрерывные , где все события происходят непрерывно во времени.

По области применения модели подразделяют на универсальные , предназначенные для использования многими системами, и специализированные , созданные для исследования конкретной системы.

2.2 Информационные модели

Информационные модели во многих случаях опираются на математические модели, так как при решении задач математическая модель исследуемого объекта, процесса или явления неизбежно преобразуется в информационную для её реализации на компьютере. Определим основные понятия информационной модели.

Информационным объектом называется описание реального объекта, процесса или явления в виде совокупности его характеристик (информационных элементов), называемых реквизитами . Информационный объект определённой структуры (реквизитного состава) образует тип (класс), которому присваивают уникальное имя . Информационный объект с конкретными характеристиками называют экземпляром . Каждый экземпляр идентифицируется заданием ключевого реквизита (ключа). Одни и те же реквизиты в различных информационных объектах могут быть как ключевыми, так и описательными. Информационный объект может иметь несколько ключей.

2.3 Понятие алгоритма и его свойства

«Алгоритм» является базовым основополагающим понятием информатики, а алгоритмизация и программирование - основным разделом курса информатики (ядром курса). Понятие алгоритма, как и понятие информации, даётся множеством самых разнообразных определений - от «наивно-интуитивных» («алгоритм - это план решения задачи») до «строго формализованных» (нормальные алгоритмы Маркова). Понятие алгоритма, являющееся фундаментальным в математике и информатике, возникло задолго до появления средств вычислительной техники.

Термин «алгоритм (алгорифм)» появился в Средние века, когда европейцы знакомились со способами выполнения арифметических действий в десятичной системе счисления по книге узбекского математика Абу Джафара Муххамада ибн Мусы аль-Хорезми (783-850 г.) «Арифметика индусскими цифрами», получившей широкую известность. Слово «алгоритм» есть результат европейского произношения слов «аль-Хорезми» («аль-Хорезми» - человек из города Хорезми; в настоящее время город Хива в Хорезмской области Узбекистана).

Единого определения понятия алгоритма нет. Первоначально под алгоритмом понимали способ выполнения арифметических действий над десятичными числами. В дальнейшем алгоритмом стали называть точное предписание, определяющее порядок действий, обеспечивающий получение требуемого результата из исходных данных за конечное число шагов.

Алгоритм (по Д. Э. Кнуту) - это конечный набор правил, который определяет последовательность операций для решения конкретного множества задач и обладает пятью важными чертами: конечность, определённость, ввод, вывод, эффективность.

Алгоритм (по А. Н. Колмогорову) - это система вычислений, выполняемых по строго определённым правилам, которая после какого-либо числа шагов заведомо приводит к решению поставленной задачи.

Алгоритм (по А. А. Маркову) - это точное предписание, определяющее вычислительный процесс, идущий от варьируемых исходных данных к искомому результату.

Алгоритм может быть предназначен для выполнения его человеком или автоматическим устройством.

Применительно к ЭВМ алгоритм определяет вычислительный процесс, начинающийся с обработки некоторой совокупности возможных исходных данных и направленный на получение определенных этими исходными данными результатов. Термин «вычислительный процесс» распространяется и на обработку других видов информации, например, символьной, графической или звуковой.

Алгоритм должен обладать следующими свойствами:

? дискретностью;

? массовостью;

? определённостью;

? результативностью;

? формальностью.

Дискретность (разрывность, раздельность). Каждый алгоритм состоит из отдельных законченных действий, т.е. делится на шаги.

Массовость - применимость алгоритма ко всем задачам некоторого класса, различающимся только исходными данными. При этом исходные данные могут выбираться из некоторой области, которая называется областью применимости алгоритма.

Определённость (детерминированность, точность) - свойство алгоритма, указывающее на то, что каждый шаг алгоритма должен быть строго определён и не должен допускать произвола в толковании. Также строго должен быть определён порядок выполнения отдельных шагов. Благодаря этому свойству многократное выполнение алгоритма при одних и тех же исходных данных даёт один и тот же результат.

Результативность (конечность) - свойство, состоящее в том, что любой алгоритм должен приводить к правильному решению задачи за конечное (может быть очень большое) число шагов, либо подавать сигнал о том, что данный алгоритм неприменим для решения поставленной задачи.

Формальность - это свойство указывает на то, что любой исполнитель, незнакомый с содержанием алгоритма, но способный воспринимать и выполнять инструкции алгоритма, действуя формально, т.е. отвлекаясь от содержания поставленной задачи и лишь строго выполняя инструкции, получает необходимый результат. Думать о том, какие действия и в какой последовательности нужно выполнить, должен разработчик алгоритма, а исполнитель формально (не думая, механически) поочерёдно исполняет предложенные команды и получает необходимый результат.

2.4 Способы описания алгоритмов

В настоящее время используются следующие способы описания алгоритмов:

Словесно-формульное описание алгоритма;

Псевдокод;

Табличный способ;

Языки программирования (программа);

Графический способ (блок-схема).

Словесно-формульное описание алгоритма представляет структуру алгоритма и содержание выполняемых действий средствами естественного языка. Достоинства этого способа: общедоступность, возможность описывать алгоритм с любой степенью детализации. Недостаток этого способа - многословность, низкая наглядность, громоздкость, возможна неоднозначность толкования.

Псевдокод - описание структуры алгоритма на естественном, частично формализованном языке, позволяющее выявить основные этапы решения задачи перед точной его записью на языке программирования. В псевдокоде используются некоторые формальные конструкции и общепринятая математическая символика. Строгих синтаксических правил для записи псевдокода не существует. Это облегчает запись алгоритма при проектировании и позволяет описать алгоритм, используя любой набор команд. Однако в псевдокоде обычно используются некоторые конструкции, присущие формальным языкам, что облегчает переход от псевдокода к записи алгоритма на языке программирования. Единого или формального определения псевдокода не существует, поэтому возможны различные псевдокоды, отличающиеся набором используемых слов и конструкций.

Графический способ представления алгоритмов (блок-схема) - имеет ряд преимуществ благодаря визуальности и явному отображению процесса решения задачи. Алгоритмы, представленные графическими средствами, получили название визуальные алгоритмы.

При проектировании визуальных алгоритмов используют специальные графические символы.Результатом алгоритмизации решения задачи является блок-схема алгоритма, состоящая из некоторой последовательности графических блоков, связанных по управлению линиями (направлениями потока) со стрелками. В блоках записывается последовательность действий. Блоки могут нумероваться. Порядковые номера проставляются слева в верхней части символов. В пределах одной схемы рекомендуется изображать блоки одинаковых размеров. Для визуального представления алгоритмов обычно используют символы в соответствии с ГОСТ 19.701-90 «Единая система программной документации. Схемы алгоритмов, программ, данных и систем. Условные обозначения и правила выполнения»

Общими правилами при проектировании схем являются следующие правила:

1. Каждая схема должна начинаться и заканчиваться символами, обозначающими начало и окончание алгоритма. В алгоритме должен быть только один символ начала и один символ окончания.

2. В начале алгоритма должны быть символы ввода значений входных данных.

3. После ввода значений входных данных могут следовать символы обработки и символы условия.

4. В конце алгоритма должны располагаться символы вывода значений выходных данных.

Описания алгоритма в словесной форме, на псевдокоде или в виде блок-схемы допускают некоторую произвольность при изображении команд. Вместе с тем, любая из этих форм позволяет человеку понять суть дела и исполнить алгоритм. На практике исполнителями алгоритмов выступают компьютеры. Поэтому алгоритм, предназначенный для исполнения на компьютере, должен быть записан на «понятном» ему языке, такой формализованный язык называют языком программирования . Алгоритм, записанный на языке программирования, называется программой . В этом случае алгоритм представляется в виде последовательности операторов языка программирования.

2.5 Базовые управляющие структуры алгоритмов (основные алгоритмические конструкции)

Метод структурной алгоритмизации. Этот метод основан на визуальном представлении алгоритма в виде последовательности управляющих структурных элементов? управляющих структур. Принцип структурной алгоритмизации заключается в том, что логическая структура любой программы может быть выражена комбинацией из следующих базовых структур:

1) Композиция (следование);

2) Альтернатива (ветвление);

3) Итерация (цикл).

Структурная блок-схема ? композиция из базовых алгоритмических структур.

Альтернатива, или ветвление - это конструкция ветвления, имеющая предикатную вершину.

Итерация, или циклы - это циклическая конструкция алгоритма, состоящая из композиции и альтернативы.

Алгоритмическая структура (базовая управляющая структура) «Итерация, или цикл» может быть представлена в двух формах: с предусловием и с постусловием.

А лгоритмы линейной структуры -линейные алгоритмы предполагают последовательное выполнение действий в порядке, заданном схемой, без их повторения или пропуска некоторых действий. Алгоритм линейной структуры изображается линейной последовательностью связанных друг с другом блоков. Такой порядок выполнения действий называется естественным. Поэтому в схемах алгоритмов линейной структуры нет блока «Решение».

Алгоритмы ветвящейся структуры - в отличие от линейных алгоритмов, в которых команды выполняются последовательно одна за другой, в разветвляющиеся алгоритмы входит условие, в зависимости от выполнения или невыполнения которого выполняется та или иная последовательность операций, групп операций или базовая управляющая структура. Каждая такая последовательность действий называется ветвью алгоритма.

Таким образом, алгоритм ветвящейся структуры содержит только структуры «Следование» и «Ветвление»

Алгоритмы циклической структуры являются наиболее распространённым видом алгоритмов. В алгоритмах циклической структуры в зависимости от выполнения или невыполнения какого-либо условия выполняется повторяющаяся последовательность действий, называющаяся телом цик ла .

Практическая часть

Задание 1

Переведите число из одной системы счисления в другую:

462 > римскую с. сч.

Решение: 462=400+60+2=(D-C)+(L+X)+(I+I)=CDLXII

Ответ: CDLXII

Задание 2

Составьте таблицы истинности логических выражений:

Решение:

1. В данной функции две логические переменные: ¬А, В

2. Строк в таблице: 2 2 =4+1=5

3. Расставляем порядок действий: 1) ¬А; 2) ¬В: 3) (¬А /\ В); 4) (А/\¬В);

5) (¬А /\ В) \/(А/\¬В)

(¬А /\ В) \/(А/\¬В)

Задание 3

На схеме нарисованы дороги между населенными пунктами A, B, C, D, E, F и указаны протяжённости дорог. (Отсутствие числа в таблице означает, что прямой дороги между пунктами нет). Определите длину кратчайшего пути между пунктами A и F(при условии, что передвигаться можно только по указанным на схеме дорогам).

Задание 4

В таблице приведены запросы к поисковому серверу. Расположите обозначения запросов в порядке возрастания количества страниц, которые найдет поисковый сервер по каждому запросу.

Для обозначения логической операции «ИЛИ» в запросе используется символ «|», а для логической операции «И» - «&». Укажите минимальное количество страниц (в тысячах) найденное по запросу.

Ответ: В;Б:А;Г, количество страниц 99тыс.

Задание 5

Вычислите результат работы следующей программы. Текст программы приведен на трёх языках программирования

Задание 6

В таблице Dat хранятся положительные или отрицательные целые числа. Определите, что будет напечатано в результате выполнения следующего алгоритма, записанного на трёх языках.

Литература

1. Информатика: Учебник. / Б.В. Соболь, А.Б. Галин, Ю.В. Панов и др. - 5-е изд. - Ростов н/Д: Феникс, 2010. - 446 с.

2. Информатика. Базовый курс: учеб. пособия для втузов / ред. С. В. Симонович. - 3-е изд. - СПб.: Питер, 2013. - 638 с.

Размещено на Allbest.ru

...

Подобные документы

    Состав и обоснование выбора компонентов персонального компьютера (процессора, материнской платы, комплектующих и периферийных устройств), требования к ним и характеристики. Структурная схема компьютера, его программное обеспечение и расчёт стоимости.

    контрольная работа , добавлен 12.02.2015

    Компоновка частей компьютера и связь между ними. Понятие архитектуры персонального компьютера, принципы фон Неймана. Назначение, функции базовых программных средств, исполняемая программа. Виды, назначение, функции, специфика периферийных устройств.

    контрольная работа , добавлен 23.09.2009

    Конфигурирование персонального компьютера для Вооруженных сил Российской Федерации и обоснование выбора комплектующих для него. Анализ характеристик комплектующих: процессора, материнской платы, видеокарты, жесткого диска и периферийных устройств.

    курсовая работа , добавлен 16.07.2013

    Понятие архитектуры персонального компьютера, компоновка частей компьютера и связи между ними. Составляющие системного блока ПК. Функции центрального процессора, системной платы, оперативного запоминающего устройства, видеокарты и жесткого диска.

    реферат , добавлен 28.01.2014

    Архитектура персонального компьютера, функциональные и технические характеристики его устройств. Компоненты материнской платы, строение процессора, виды памяти. Принципы работы процессора и обращение к данным. Пути развития персонального компьютера.

    курсовая работа , добавлен 11.02.2011

    Архитектура современного персонального компьютера. Виды и характеристики центральных и внешних устройств ЭВМ. Структурная и функциональная схемы персонального компьютера. Устройства для ввода информации в системный блок и для отображения информации.

    курсовая работа , добавлен 18.01.2012

    Структура персонального компьютера. Общие сведения о периферийных устройствах компьютера. Работа с дисковыми накопителями для хранения информации на гибких и жестких магнитных дисках. Устройства для чтения компакт-дисков. Варианты конструкции мыши.

    реферат , добавлен 10.01.2016

    Сущность глобальной компьютеризации и ее распространенность на современном этапе. Основные характеристики персонального компьютера и требования к нему, главные критерии выбора и оценка ассортимента. Порядок выбора конфигурации персонального компьютера.

    реферат , добавлен 31.10.2010

    Виды систем охлаждения (СО) для персонального компьютера (ПК). Основные характеристики типовых СО, меры предупреждения неполадок. Организация воздушных потоков в корпусе ПК. Обзор и тестирование СО для процессора, основные методы тестирования.

    курсовая работа , добавлен 19.06.2011

    Принципиальная схема устройства современного персонального компьютера. Краткая характеристика основных составляющих ПК: процессора, модулей оперативной (внутренней) и долговременной (внешней) памяти, устройств ввода и вывода информации для пользователя.

Федеральное агентство по образованию

Государственное образовательное

учреждение высшего профессионального образования

«Томский политехнический университет»

Факультет АВТ

Кафедра ВТ

«СОВРЕМЕННОЕ СОСТОЯНИЕ, СТРУКТУРНО-ФУНКЦИОНАЛЬНАЯ ОРГАНИЗАЦИЯ И ПЕРСПЕКТИВЫ РАЗВИТИЯ НАСТОЛЬНЫХ ПК».

Введение………………………………………………………………………..3

I. Функционально-структурная организация ПК……………………………4

II. Современное состояние настольных ПК………………………………..14

III. Перспективы развития настольных ПК………………………………...16

Заключение…………………………………………………………………...19

Список литературы…………………………………………………………..20

Введение

В наше время, когда компьютерные технологии развиваются стремительными темпами, появилось множество новых архитектур, «разновидностей» вычислительных машин, и принадлежность устройства к той или иной разновидности определяет его назначение и ставящиеся перед ним задачи.

В последние годы широкое распространение получили настольные персональные компьютеры (ПК). Строго говоря, компьютер – это комплекс технических и программных средств, предназначенных для автоматической обработки информации в процессе решения вычислительных и информационных задач. Под архитектурой ЭВМ понимается общая функциональная и структурная организация машины, определяющая методы кодирования данных, состав, назначение, принципы взаимодействия технических средств и программного обеспечения. Для любого компьютера, в том числе настольного ПК можно выделить следующие важные компоненты архитектуры:

1. Функциональные и логические возможности процессора (система команд, форматы команд и данных, способы адресации, разрядность обрабатываемых слов и т.д.)

2. Структурная организация и принципы управления аппаратными средствами (центральным процессором, памятью, вводом-выводом, системным интерфейсом и т.д.)

3. Программное обеспечение (операционная система, трансляторы языков программирования, прикладное ПО)

В данном реферате я рассмотрю структуру и дальнейшие возможности развития настольных компьютеров.

Достоинствами ПК являются:

  • малая стоимость, находящаяся в пределах доступности для индивидуального покупателя;
  • автономность эксплуатации без специальных требований к условиям окружающей среды;
  • гибкость архитектуры, обеспечивающая ее адаптивность к разнообразным применениям в сфере управления, науки, образования, в быту;
  • "дружественность" операционной системы и прочего программного обеспечения, обусловливающая возможность работы с ней пользователя без специальной профессиональной подготовки;
  • высокая надежность работы (более 5 тыс. ч наработки на отказ).

I . Структурно-функциональная организация ПК

Рассмотрим состав и назначение основных блоков ПК:


Структурная схема персонального компьютера

Микропроцессор (МП). Это центральный блок ПК, предназначенный для управление работой всех блоков машины и для выполнения арифметических и логических операции над информацией.

В состав микропроцессора входят:

  • устройство управления (УУ) - формирует и подает во все блоки машины в нужные моменты времени определенные сигналы управления (управляющие импульсы), обусловленные спецификой выполняемой операции и результатами предыдущих операций; формирует адреса ячеек памяти, используемых выполняемой операцией, и передает эти адреса в соответствующие блоки ЭВМ; опорную последовательность импульсов устройство управления получает от генератора тактовых импульсов;
  • арифметико-логическое устройство (АЛУ) - предназначено для выполнения всех арифметических и логических операций над числовой и символьной информацией (в некоторых моделях ПК для ускорения выполнения операций к АЛУ подключается дополнительный математический сопроцессор );
  • микропроцессорная память (МПП) - служит для кратковременного хранения, записи и выдачи информации, непосредственно используемой в вычислениях в ближайшие такты работы машины. МПП строится на регистрах и используется для обеспечения высокого быстродействия машины, ибо основная память (ОП) не всегда обеспечивает скорость записи, поиска и считывания информации, необходимую для эффективной работы быстродействующего микропроцессора. Регистры - быстродействующие ячейки памяти различной длины (в отличие от ячеек ОП, имеющих стандартную длину 1 байт и более низкое быстродействие);
  • интерфейсная система микропроцессора - реализует сопряжение и связь с другими устройствами ПК; включает в себя внутренний интерфейс МП, буферные запоминающие регистры и схемы управления портами ввода-вывода (ПВВ) и системной шиной. Интерфейс (interface) - совокупность средств сопряжения и связи устройств компьютера, обеспечивающая их эффективное взаимодействие. Порт ввода-вывода (I/O ≈ Input/Output port) - аппаратура сопряжения, позволяющая подключить к микропроцессору другое устройство ПК.

Генератор тактовых импульсов . Он генерирует последовательность электрических импульсов; частота генерируемых импульсов определяет тактовую частоту машины. Промежуток времени между соседними импульсами определяет время одного такта работы машины или просто такт работы машины .

Частота генератора тактовых импульсов является одной из основных характеристик персонального компьютера и во многом определяет скорость его работы, ибо каждая операция в машине выполняется за определенное количество тактов.

Системная шина. Это основная интерфейсная система компьютера, обеспечивающая сопряжение и связь всех его устройств между собой.

Системная шина включает в себя:

  • кодовую шину данных (КШД), содержащую провода и схемы сопряжения для параллельной передачи всех разрядов числового кода (машинного слова) операнда;
  • кодовую шину адреса (КША), включающую провода и схемы сопряжения для параллельной передачи всех разрядов кода адреса ячейки основной памяти или порта ввода-вывода внешнего устройства;
  • кодовую шину инструкций (КШИ), содержащую провода и схемы сопряжения для передачи инструкций (управляющих сигналов, импульсов) во все блоки машины;
  • шину питания, имеющую провода и схемы сопряжения для подключения блоков ПК к системе энергопитания.

Системная шина обеспечивает три направления передачи информации:

1) между микропроцессором и основной памятью;

2) между микропроцессором и портами ввода-вывода внешних устройств;

3) между основной памятью и портами ввода-вывода внешних устройств (в режиме прямого доступа к памяти).

Все блоки, а точнее их порты ввода-вывода, через соответствующие унифицированные разъемы (стыки) подключаются к шине единообразно: непосредственно или через контроллеры (адаптеры) . Управление системной шиной осуществляется микропроцессором либо непосредственно, либо, что чаще, через дополнительную микросхему - контроллер шины, формирующий основные сигналы управления. Обмен информацией между внешними устройствами и системной шиной выполняется с использованием ASCII-кодов.

Основная память (ОП). Она предназначена для хранения и оперативного обмена информацией с прочими блоками машины. ОП содержит два вида запоминающих устройств: постоянное запоминающее устройство (ПЗУ) и оперативное запоминающее устройство (ОЗУ).

ПЗУ служит для хранения неизменяемой (постоянной) программной и справочной информации, позволяет оперативно только считывать хранящуюся в нем информацию (изменить информацию в ПЗУ нельзя).

ОЗУ предназначено для оперативной записи, хранения и считывания информации (программ и данных), непосредственно участвующей в информационно-вычислительном процессе, выполняемом ПК в текущий период времени. Главными достоинствами оперативной памяти являются ее высокое быстродействие и возможность обращения к каждой ячейке памяти отдельно (прямой адресный доступ к ячейке), В качестве недостатка ОЗУ следует отметить невозможность сохранения информации в ней после выключения питания машины (энергозависимость).

Внешняя память. Она относится к внешним устройствам ПК и используется для долговременного хранения любой информации, которая может когда-либо потребоваться для решения задач. В частности, во внешней памяти хранится все программное обеспечение компьютера. Внешняя память содержит разнообразные виды запоминающих устройств, но наиболее распространенными, имеющимися практически на любом компьютере, являются накопители на жестких (НЖМД) и гибких (НГМД) магнитных дисках.

Назначение этих накопителей - хранение больших объемов информации, запись и выдача хранимой информации по запросу в оперативное запоминающее устройство. Различаются НЖМД и НГМД лишь конструктивно, объемами хранимой информации и временем поиска, записи и считывания информации.

В качестве устройств внешней памяти используются также запоминающие устройства на кассетной магнитной ленте (стримеры), накопители на оптических дисках (CD-ROM - Compact Disk Read Only Memory - компакт-диск с памятью, только читаемой) и др.

Источник питания. Это блок, содержащий системы автономного и сетевого энергопитания ПК.

Таймер. Это внутримашинные электронные часы, обеспечивающие при необходимости автоматический съем текущего момента времени (год, месяц, часы, минуты, секунды и доли секунд). Таймер подключается к автономному источнику питания - аккумулятору и при отключении машины от сети продолжает работать.

Внешние устройства (ВУ). Это важнейшая составная часть любого вычислительного комплекса. Достаточно сказать, что по стоимости ВУ иногда составляют 50 - 80% всего ПК, От состава и характеристик ВУ во многом зависят возможность и эффективность применения ПК в системах управления и в народном хозяйстве в целом.

ВУ ПК обеспечивают взаимодействие машины с окружающей средой; пользователями, объектами управления и другими ЭВМ. ВУ весьма разнообразны и могут быть классифицированы по ряду признаков. Так, по назначению можно выделить следующие виды ВУ:

  • внешние запоминающие устройства (ВЗУ) или внешняя память ПК;
  • диалоговые средства пользователя;
  • устройства ввода информации;
  • устройства вывода информации;
  • средства связи и телекоммуникации.

Диалоговые средства пользователя включают в свой состав видеомониторы (дисплеи), реже пультовые пишущие машинки (принтеры с клавиатурой) и устройства речевого ввода-вывода информации.

Видеомонитор (дисплей) - устройство для отображения вводимой и выводимой из ПК информации.

Устройства речевого ввода-вывода относятся к быстроразвивающимся средствам мультимедиа. Устройства речевого ввода - это различные микрофонные акустические системы, "звуковые мыши", например, со сложным программным обеспечением, позволяющим распознавать произносимые человеком буквы и слова, идентифицировать их и закодировать.

Устройства речевого вывода - это различные синтезаторы звука, выполняющие преобразование цифровых кодов в буквы и слова, воспроизводимые через громкоговорители (динамики) или звуковые колонки, подсоединенные к компьютеру.

К устройствам ввода информации относятся:

  • клавиатура - устройство для ручного ввода числовой, текстовой и управляющей информации в ПК;
  • графические планшеты (диджитайзеры) - для ручного ввода графической информации, изображений путем перемещения по планшету специального указателя (пера); при перемещении пера автоматически выполняются считывание координат его местоположения и ввод этих координат в ПК;
  • сканеры (читающие автоматы) - для автоматического считывания с бумажных носителей и ввода в ПК машинописных текстов, графиков, рисунков, чертежей; в устройстве кодирования сканера в текстовом режиме считанные символы после сравнения с эталонными контурами специальными программами преобразуются в коды ASCII, а в графическом режиме считанные графики и чертежи преобразуются в последовательности двухмерных координат;
  • манипуляторы (устройства указания): джойстик - рычаг, мышь, трекбол - шар в оправе, световое перо и др. - для ввода графической информации на экран дисплея путем управления движением курсора по экрану с последующим кодированием координат курсора и вводом их в ПК;
  • сенсорные экраны - для ввода отдельных элементов изображения, программ или команд с полиэкрана дисплея в ПК.
  • К устройствам вывода информации относятся:
  • принтеры - печатающие устройства для регистрации информации на бумажный носитель;
  • графопостроители (плоттеры) - для вывода графической информации (графиков, чертежей, рисунков) из ПК на бумажный носитель; плоттеры бывают векторные с вычерчиванием изображения с помощью пера и растровые: термографические, электростатические, струйные и лазерные. По конструкции плоттеры подразделяются на планшетные и барабанные. Основные характеристики всех плоттеров примерно одинаковые: скорость вычерчивания - 100 - 1000 мм/с, у лучших моделей возможны цветное изображение и передача полутонов; наибольшая разрешающая способность и четкость изображения у лазерных плоттеров, но они самые дорогие.

Устройства связи и телекоммуникации используются для связи с приборами и другими средствами автоматизации (согласователи интерфейсов, адаптеры, цифро-аналоговые и аналого-цифровые преобразователи и т.п.) и для подключения ПК к каналам связи, к другим ЭВМ и вычислительным сетям (сетевые интерфейсные платы, "стыки", мультиплексоры передачи данных, модемы).

Многие из названных выше устройств относятся к условно выделенной группе - средствам мультимедиа.

Средства мультимедиа (multimedia - многосредовость) - это комплекс аппаратных и программных средств, позволяющих человеку общаться с компьютером, используя самые разные, естественные для себя среды: звук, видео, графику, тексты, анимацию и др.

К средствам мультимедиа относятся устройства речевого ввода и вывода информации; широко распространенные уже сейчас сканеры (поскольку они позволяют автоматически вводить в компьютер печатные тексты и рисунки); высококачественные видео- (video-) и звуковые (sound-) платы, платы видеозахвата (videograbber), снимающие изображение с видеомагнитофона или видеокамеры и вводящие его в ПК; высококачественные акустические и видеовоспроизводящие системы с усилителями, звуковыми колонками, большими видеоэкранами. Но, пожалуй, еще с большим основанием к средствам мультимедиа относят внешние запоминающие устройства большой емкости, часто используемые для записи звуковой и видеоинформации.

Сейчас для записи, хранения и воспроизведения информации используются CD, DVD-диски, а также широко распространившиеся в последнее время флэш-накопители. Простота использования, минимальные габариты, возрастающая емкость памяти и снижающаяся цена ставят последних вне конкуренции, и вполне возможно, в дальнейшем это приведет к вытеснению с рынка оптических дисков, так как ранее CD вытеснили дискеты.

Дополнительные схемы. К системной шине и к МП ПК наряду с типовым внешними устройствами могут быть подключены и некоторые дополнительные платы с интегральными микросхемами, расширяющие и улучшающие функциональные возможности микропроцессора: математический сопроцессор, контроллер прямого доступа к памяти, сопроцессор ввода-вывода, контроллер прерываний и др.

Математический сопроцессор широко используется для ускоренного выполнения операций над двоичными числами с плавающей запятой, над двоично-кодированными десятичными числами, для вычисления некоторых трансцендентных, в том числе тригонометрических, функций. Математический сопроцессор имеет свою систему команд и работает параллельно (совмещенно во времени) с основным МП, но под управлением последнего. Ускорение операций происходит в десятки раз. Последние модели МП, начиная с МП 80486 DX, включают сопроцессор в свою структуру.

Контроллер прямого доступа к памяти освобождает МП от прямого управления накопителями на магнитных дисках, что существенно повышает эффективное быстродействие ПК. Без этого контроллера обмен данными между ВЗУ и ОЗУ осуществляется через регистр МП, а при его наличии данные непосредственно передаются между ВЗУ и ОЗУ, минуя МП.

Сопроцессор ввода-вывода за счет параллельной работы с МП значительно ускоряет выполнение процедур ввода-вывода при обслуживании нескольких внешних устройств (дисплей, принтер, НЖМД, НГМД и др.); освобождает МП от обработки процедур ввода-вывода, в том числе реализует и режим прямого доступа к памяти.

Важнейшую роль играет в ПК контроллер прерываний.

Прерывание - временный останов выполнения одной программы в целях оперативного выполнения другой, в данный момент более важной (приоритетной) программы.

Прерывания возникают при работе компьютера постоянно. Достаточно сказать, что все процедуры ввода-вывода информации выполняются по прерываниям, например, прерывания от таймера возникают и обслуживаются контроллером прерываний 18 раз в секунду (естественно, пользователь их не замечает).

Контроллер прерываний обслуживает процедуры прерывания, принимает запрос на прерывание от внешних устройств, определяет уровень приоритета этого запроса и выдает сигнал прерывания в МП. МП, получив этот сигнал, приостанавливает выполнение текущей программы и переходит к выполнению специальной программы обслуживания того прерывания, которое запросило внешнее устройство. После завершения программы обслуживания восстанавливается выполнение прерванной программы. Контроллер прерываний является программируемым.

Элементы конструкции ПК

Конструктивно ПК выполнены в виде центрального системного блока, к которому через разъемы подключаются внешние устройства: дополнительные устройства памяти, клавиатура, дисплей, принтер и др.

Системный блок обычно включает в себя системную плату, блок питания, накопители на дисках, разъемы для дополнительных устройств и платы расширения с контроллерами - адаптерами внешних устройств.

На системной плате (часто ее называют материнской платой Mother Board), как правило, размещаются:

  • микропроцессор;
  • математический сопроцессор;
  • генератор тактовых импульсов;
  • блоки (микросхемы) ОЗУ и ПЗУ;
  • адаптеры клавиатуры, НЖМД и НГМД;
  • контроллер прерываний;
  • таймер и др.

Функциональные характеристики ПК

Основными характеристиками ПК являются:

1. Быстродействие, производительность, тактовая частота.

Единицами измерения быстродействия служат:

  • МИПС (MIPS - Mega Instruction Per Second) - миллион операций над числами с фиксированной запятой (точкой);
  • МФЛОПС (MFLOPS - Mega FLoating Operations Per Second) - миллион операций над числами с плавающей запятой (точкой);
  • КОПС (KOPS - Kilo Operations Per Second) для низкопроизводительных ЭВМ - тысяча неких усредненных операций над числами;
  • ГФЛОПС (GFLOPS - Giga FLoating Operations Per Second) - миллиард операций в секунду над числами с плавающей запятой (точкой).

Оценка производительности ЭВМ всегда приблизительная, ибо при этом ориентируются на некоторые усредненные или, наоборот, на конкретные виды операций. Реально при решении различных задач используются и различные наборы операций. Поэтому для характеристики ПК вместо производительности обычно указывают тактовую частоту, более объективно определяющую быстродействие машины, так как каждая операция требует для своего выполнения вполне определенного количества тактов. Зная тактовую частоту, можно достаточно точно определить время выполнения любой машинной операции.

2. Разрядность машины и кодовых шин интерфейса.

Разрядность ≈ это максимальное количество разрядов двоичного числа, над которым одновременно может выполняться машинная операция, в том числе и операция передачи информации; чем больше разрядность, тем, при прочих равных условиях, будет больше и производительность ПК.

3. Типы системного и локальных интерфейсов.

Разные типы интерфейсов обеспечивают разные скорости передачи информации между узлами машины, позволяют подключать разное количество внешних устройств и различные их виды.

4. Емкость оперативной памяти.

Емкость оперативной памяти измеряется чаще всего в мегабайтах (Мбайт), реже в килобайтах (Кбайт). 1 Мбайт = 1024 Кбайта = 1024 2 байт.

Многие современные прикладные программы при оперативной памяти емкостью меньше 8 Мбайт просто не работают либо работают, но очень медленно.

Следует иметь в виду, что увеличение емкости основной памяти в 2 раза, помимо всего прочего, дает повышение эффективной производительности ЭВМ при решении сложных задач примерно в 1,7 раза.

5. Емкость накопителя на жестких магнитных дисках (винчестера). Емкость винчестера измеряется обычно в мегабайтах или гигабайтах (1 Гбайт = 1024 Мбайта).

По прогнозам специалистов, многие программные продукты 1997 г. будут требовать для работы до 1 Гбайта внешней памяти.

6. Тип и емкость накопителей на гибких магнитных дисках.

Сейчас применяются в основном накопители на гибких магнитных дисках, использующие дискеты диаметром 3,5 и 5,25 дюйма (1 дюйм = 25,4 мм). Первые имеют стандартную емкость 1,44 Мбайта, вторые - 1,2 Мбайта.

7. Виды и емкость КЭШ-памяти.

КЭШ-память - это буферная, не доступная для пользователя быстродействующая память, автоматически используемая компьютером для ускорения операций с информацией, хранящейся в более медленно действующих запоминающих устройствах. Например, для ускорения операций с основной памятью организуется регистровая КЭШ-память внутри микропроцессора (КЭШ-память первого уровня) или вне микропроцессора на материнской плате (КЭШ-память второго уровня); для ускорения операций с дисковой памятью организуется КЭШ-память на ячейках электронной памяти.

Следует иметь в виду, что наличие КЭШ-памяти емкостью 256 Кбайт увеличивает производительность ПК примерно на 20%.

8. Тип видеомонитора (дисплея) и видеоадаптера.

9. Тип принтера.

10. Наличие математического сопроцессора.

Математический сопроцессор позволяет в десятки раз ускорить выполнение операций над двоичными числами с плавающей запятой и над двоично-кодированными десятичными числами.

11. Имеющееся программное обеспечение и вид операционной системы

12. Аппаратная и программная совместимость с другими типами ЭВМ.

Аппаратная и программная совместимость с другими типами ЭВМ означает возможность использования на компьютере соответственно тех же технических элементов и программного обеспечения, что и на других типах машин.

13. Возможность работы в вычислительной сети

14. Возможность работы в многозадачном режиме.

Многозадачный режим позволяет выполнять вычисления одновременно по нескольким программам (многопрограммный режим) или для нескольких пользователей (многопользовательский режим). Совмещение во времени работы нескольких устройств машины, возможное в таком режиме, позволяет значительно увеличить эффективное быстродействие ЭВМ.

15. Надежность.

Надежность - это способность системы выполнять полностью и правильно все заданные ей функции. Надежность ПК измеряется обычно средним временем наработки на отказ.

16. Стоимость.

17. Габариты и масса.

II . Современное состояние настольных ПК

На нынешнем этапе развития ПК можно выделить 2 основные платформы: Wintel и Apple.

Самой распространенной является платформа Wintel на базе х86 процессоров благодаря своей универсальности, а также стоимости. Эта платформа имеет множество клонов, т.е. аналогичных компьютеров, выпускаемых различными фирмами США, Западной Европы, России, Японии и др.

Платформа Apple представлена довольно популярными на Западе компьютерами Macintosh. Они занимают на мировом рынке довольно узкую, однако достаточно стабильную нишу.

Формальными отличиями между платформами является тип процессора и операционная система. В Macintosh используется RISС-архитектура процессора и UNIX-подобное ядро операционной системы. Однако в последние годы в аппаратном плане эти две платформы постепенно сближаются. Поэтому основным отличием можно считать количество производимых в мире аппаратных средств и программного обеспечения, где Wintel вне конкуренции. Apple имеет небольшое количество высокопроизводительных моделей, а также значительно уступает в количестве произведенного ПО. Из этого следует вывод, что имея компьютер Wintel, можно выполнить любую операцию, но при этом не всегда быстро и удобно. На Apple ту же операцию можно сделать либо быстро, либо не выполнить вообще.

Приведем в пример несколько моделей ПК, популярных на сегодняшний день:

· Hacker Ph945

Платформа построена на основе ASUS M4A78 – добротной материнской платы среднего уровня на чипсете AMD 770 с поддержкой DDR2. Она хорошо оснащена, но без особых излишеств. Из особенностей практического толка отметим наличие на задней панели оптического S/PDIF и порта eSATA. В системе используются не так давно анонсированный четырехъядерный процессор AMD Phenom II X4 945 с приличной вычислительной мощностью и 4 ГБ оперативной памяти. Видеоподсистема тоже на уровне. Графические адаптеры GeForce GTS 250 подходят для оптимальных ПК, при очень хорошем соотношении цена/производительность они способны обеспечить комфортное количество кадров в cекунду в последних играх.

Связка Phenom II X4 945 + GeForce GTS 250 в целом очень неплохо себя показала во время тестирований. Вероятно, в такой комбинации имеет место незначительный перекос в сторону чуть более производительного процессора, но его возможности пригодятся в неигровых многопоточных задачах.

Система собрана в корпусе Microlab M4812. Данная модель внешне довольно интересна и практична в использовании. На передней панели, в отсеке для 3,5-дюймовых устройств, установлен мультиформатный кард-ридер Samsung SFD-321F/T4XB, позволяющий работать с флеш-картами всех распространенных типов. Здесь же, на фронтальной стороне, имеется аналоговый регулятор скорости вращения 120-миллиметрового вентилятора, закрепленного на задней стенке корпуса. Возможностей БП вполне достаточно для работы предложенной конфигурации, но без особого запаса. Модель M-ATX-420W соответствует стандарту ATX 1.3, который не предполагает серьезных нагрузок по линии 12 В, применяемой современными видеокартами и системой питания CPU. В рассмотренной конфигурации энергопотребление компьютера в режиме покоя составляет порядка 120 Вт, увеличиваясь до 270 Вт в «тяжелых» сценах в Crysis.
Система не беззвучна, в режиме ожидания компьютер функционирует довольно тихо, под нагрузкой активнее включаются в работу вентиляторы блока питания и видео­карты, хотя в целом уровень шума «ниже среднего».

· Dell HPS 730 H2C

Dell обновила линейку игровых компьютеров XPS 730 H2C. В солидном алюминиевом корпусе инженеры поместили материнскую плату на базе чипсета NVIDIA nForce 790i Ultra SLI с установленным процессором Intel Core 2 Extreme (с заводским разгоном), парой видеокарт ATI Radeon HD 3870 X2 или NVIDIA GeForce 8800GT SLI и оперативной памятью Corsair DOMINATOR стандарта DDR3. Используемая в ПК система охлаждения H2C уникальна и является плодом совместной разработки Dell, Intel, Delphi и CoolIT.

Мировой рынок настольных ПК является самым многочисленным, но в последние годы переживает острый кризис из-за спада спроса на свою продукцию. Все большую популярность приобретают мобильные ПК. Это объясняется ростом производительности мобильных компьютеров и одновременным снижением их цены.

III . Перспективы развития настольных ПК

В связи с ежегодным увеличением процента продаж ноутбуков может сложиться впечатление, что мобильные ПК в скором времени могут вытеснить стационарные. Однако специалисты считают, что настольные компьютеры еще рано списывать со счетов. Несмотря на увеличивающуюся производительность мобильных ПК, развитие стационарных компьютеров также не замедляется.

Популярность ноутбуков прежде всего объяснятся их ориентированностью на решение тех задач, которым не может удовлетворить домашний компьютер (что, в свою очередь, связано с возможностью автономного питания ноутбуков). Однако нужно сказать о том, что настольный компьютер прежде всего характеризуется производительностью, что позволяет пользователю выполнить на нем практически любую задачу. Мобильный ПК же должен обладать рядом дополнительных характеристик (таких как вес, габариты, время автономной работы), что отводит производительность на второй план. К тому же представляет трудность модернизация ноутбука: она бывает сложна в исполнении, либо просто невозможна.

Ноутбуки

Настольные ПК

Центральный процессор

Ограниченный выбор процессоров по частотам и производительности

Полный спектр ЦП для построения системы

Видеокарта

Производительность встроенного видео значительно ниже, чем у дискретных видеокарт для настольных систем

Возможность выбора любой видеокарты; системы с несколькими видеокартами для получения максимальной производительности

Оперативная память

Объем ОЗУ до 4096 Мбайт

Объем не ограничен

Дисковая подсистема

Объем дисковой подсистемы до 500 Гбайт

Объем не ограничен

Матрицы только типа TN+Film. Используется, как правило, одна лампа подсветки, поэтому качество изображения хуже, чем у моделей для настольных мониторов сопоставимого класса

Возможность выбора любого монитора с нужным типом матрицы под конкретные нужды покупателя: TN+Film, MVA, PVA, IPS. Используется от двух до четырех (и более) ламп подсветки

Встроенная система обеспечения бесперебойного питания

Требуется покупка отдельного устройства для обеспечения бесперебойного питания

Операционная система

Обычно выбор не предлагается. Операционная система предустановлена производителем

Широкий спектр десктопных операционных систем под конкретные нужды покупателя

Модернизация

Очень ограничена. Увеличение объема оперативной памяти и замена жесткого диска (выполняется квалифицированным инженером). Возможность установки устройств CardBus и ExpressCard

Гибкая. Замена системной платы, процессора, увеличение памяти, наращивание дисковой подсистемы, установка оптических приводов, замена видеокарты, установка карт расширения

Гарантия один год. Ремонт блочный и дорогостоящий

Пожизненный бесплатный сервис

Сравнительная характеристика ноутбуков и настольных ПК

Учитывая факторы цены, производительности, модернизации, ремонта и другие, следует признать, что для получения сбалансированной и производительной системы практичнее приобрести настольный ПК. Если важна мобильность и все сопутствующие этому факторы, оптимальным выбором станет покупка ноутбука.

Настольная система позволит не только решать задачи высокой сложности, но и предоставит возможность масштабирования под меняющиеся задачи.

Прогнозируя обозримое будущее персональных компьютеров в плане расширения их возможностей, нужно отметить такие направления как:

· Наращивание производительности процессора;

· Миниатюризация процессоров;

· Ввод данных с помощью жестов и речи;

· Увеличение емкости винчестеров и плотности записи;

· Уменьшение габаритов ПК;

· Внедрение нанотехнологий, биомолекулярных и квантовых вычислителей.

Заключение

Дальнейшее развитие настольных персональных компьютеров в вышеуказанных направлениях, несомненно, в конечном итоге приведет к изменению не только их внешнего вида, но и, вполне возможно, новым вычислительным алгоритмам и новой концепции ПК в целом.

Не вызывает сомнения также то, что со временем большинство пользователей перейдут на компьютеры с автономным питанием. Но произойдет это тогда, когда мобильные ПК будут обладать достаточно высокими характеристиками, чтобы полностью заменить собой стационарные компьютеры.

Однако на сегодняшний день у настольных ПК имеется множество путей развития, и большинство производителей продолжают их усовершенствование.

Список литературы

1. Чередов А. Д. Организация ЭВМ и систем: Учебное пособие. – Томск: ТПУ, 2005. С. 3 – 30.

2. Мураховский В. И. Железо ПК. Новые возможности. – СПб.: Питер, 2005. С. 27 – 191.

3. Домашний ПК: Он-лайн журнал. - http://www.dpk.com.ua/

4. Компьютерра: Он-лайн журнал. – Ст. «ПК (перспективы и контуры) будущего». - http://offline.computerra.ru/2002/426/15178/

Любой биологический объект (человек, животное, насекомое) в процессе своей жизнедеятельности должен адекватно реагировать на воздействия со стороны объектов окружающего его мира. Это возможно только при наличии у биологических объектов органов, реализующих необходимые функции работы с информацией (данными) (Рис. 18.1.).

Функции объекта, реализующего обработку данных

Рис. 18.1.


  1. Ввод (приём) данных (информации0 от другого объекта;

  2. Хранение данных (информации);

  3. Обработка данных (информации);

  4. Вывод (передача) данных (информации) другому объекту.
Человек создал подобные себе устройства, но не в смысле внешнего вида, а в смысле реализации тех же функций, необходимых для работы с информацией.

18.1. Функции компьютера, как системы обработки данных

Рис. 18.1.1.

На рисунке 18.1.1. представлена схема антиблокировочной системы торможения (АСТ). Очевидно, что управление любым объектом основано на особенностях функционирования этого объекта управления. Управление состоит в том, что объект управления переводится в различные состояния с помощью установленной на компьютере программы управления. Смысл АСТ состоит в том, чтобы колесо автомобиля всегда вращалось. При блокировке колеса возникнет неуправляемое рулём движение автомобиля.

Водитель при торможении нажимает на педаль тормоза. Задача АСТ: не допустить блокировки колеса.

Первая функция (ввод) состоит в том, что аналоговые сигналы от датчика вращения колеса преобразуются в цифровые сигналы (коды) и вводятся в память компьютера. Вторая функция (хранение) состоит в том, что хранимые в памяти коды состояния колеса воспринимаются программой управления. Если код соответствует вращению колеса, система управления «молчит». Если код соответствует состоянию колеса «неподвижность», программа формирует код управления, который выдаётся (функция вывода) на ЦАП. Этот код преобразуется ЦАП в напряжение и воспринимается АСТ как управляющее воздействие «ослабить тормозное усилие». АСТ ослабляет тормозное усилие, и колесо начинает вращаться.

Анализ этой схемы показывает, что компьютер можно рассматривать, как устройство обработки данных, т.к. в этом устройстве реализуются все 4 функции. Однако необходимо отметить, что эти функции реализуются с помощью аппаратных и программных средств. Очевидно, что собственно задача управления электронным микроскопом реализована программой. Аппаратура играет вспомогательную роль. Именно по этой причине говорят об аппаратно- программных управляющих средствах.

На рисунке 18.1.2. представлено более сложное аппаратно-программное средство.



Рис. 18.1.2.

В данной схеме управления электронным микроскопом в контуре управления присутствует человек. Сигналы об исследуемом объекте преобразуются в коды, и выводятся на устройство отображения (дисплей). Человек, рассматривая изображение объекта, может управлять электронным микроскопом, выдавая ему команды: увеличить изображение (приблизить объектив микроскопа к объекту), уменьшить изображение, переместить объектив вправо и т.д. Команды человека преобразуются программой в управляющие коды, которые, в свою очередь, преобразуются ЦАП в сигналы различного напряжения. Сигналы воспринимаются органами управления электронным микроскопом, и он выполняет заданные пользователем команды.

Анализ двух рисунков показывает, что компьютер может функционировать без такого устройства, как дисплей. Дисплей можно рассматривать как устройство отображения, а также как устройство вывода информации. Ввод информации человеком осуществляется с помощью клавиатуры.

Функциональное устройство компьютера: аппаратное средство, реализующее конкретную функцию компьютера.

Магистрально-модульный принцип организации компьютера: все функциональные элементы компьютера соединяются друг с другом с помощью общей (системной) магистрали (шины) и обмениваются друг с другом данными через это функциональное устройство (Рис. 18.1.3.).

Состав системной магистрали:


    • шина данных;

    • шина адреса;

    • шина управления.


Рис. 18.1.3.

Мы уже рассматривали процесс исполнения программы. Процессор должен обратиться к ОП за очередной командой, затем процессор должен обратиться к ОП для выборки операндов и, наконец, процессор должен обратиться к ОП для записи результата выполнения операции над операндами. Если в процессе исполнения программы необходимо выполнить операции вводи или вывода, то только разработчик программы знает момент начала этих операций. Это значит, что в составе системы команд могут быть не только арифметические и логические команды, но и команды управления устройствами. Вывод: первичным источником обмена двух устройств между собой является процессор, который выполняет команду программы. Процессор выдаёт на шину адреса (ША) адреса устройств (абонентов), между которыми должен произойти обмен данными. Абоненты с помощью сигналов управления по шине управления должны согласовать свои действия. Данные, естественно, должны передаваться по шине данных. На рисунке 18.1.4. представлена в обобщённом виде функциональная структура компьютера.


Рис. 18.1.4.

Процессор: функциональное устройство, исполняющее команды программы.

Память компьютера: функциональное устройство, обеспечивающее хранение данных, представленных в электронном виде.

Процессор не обладает функцией хранения. По этой причине, как было уже ранее рассмотрено, процессор постоянно должен обращаться к памяти. В каждом цикле между процессором и памятью происходит обмен 1 словом. Очевидно, что память должна обладать такой же скоростью работы (быстродействием), как и процессор. Были найдены технические элементы, которые обладают быстродействием, близким к быстродействию процессора. Однако эти элементы имеют 2 недостатка. Первый недостаток: хранимые в этой памяти данные пропадают при отключении питания. Второй недостаток относится к сфере экономики: эти устройства достаточно дорогие. Поэтому в современных компьютерах существует 2 уровня памяти. Первый уровень – оперативная память (ОП). Именно только с ней обменивается данными процессор во время исполнения программы.

Память второго уровня составляет жёсткий магнитный диск (ЖМД). Это медленное устройство. Оно обменивается данными с ОП и другими функциональными элементами компьютера. Если проследить развитие персональных компьютеров, то можно видеть постоянный рост объёмов оперативной памяти. Это связано также с экономическим фактором: по мере увеличения выпуска, развития технологий производства элементной базы модули оперативной памяти становятся всё дешевле. Эволюция объёмов ОП: 128 кб, 256 кб, 512 кб, 1 мб, 128 мб, 256 мб, 512 мб, 1 гб, 2 гб и т.д.

В каждом цикле ОП обменивается с процессором 1 словом. В каждом цикле ОП обменивается с ЖМД блоком, состоящим из нескольких слов (Рис. 18.1.5.).

Ядро компьютера: набор функциональных устройств, реализующих функции хранения и обработки. В состав ядра компьютера входят: процессор, оперативная память, ЖМД.

Рис. 18.1.5.

Примечание. Обратите внимание, понятие «ядро компьютера» является функциональным, а не техническим (формальным). Примером формального подхода является разделение памяти на внутреннюю и внешнюю. Внутренней считается оперативная память, внешней - долговременная. Критерием такого разделения является формальная способность устройств памяти хранить информацию после отключения питания. В то же время при этой классификации не объясняются понятия «внутренняя» и «внешняя». Что является тем объектом, по отношению к которому используются эти понятия?

Совет. При введении любой классификации, необходимо чётко определять критерий классификации и все понятия, используемые при описании классификации.

Остальные устройства являются по отношению к ядру устройствами ввода-вывода.

Клавиатура является простейшим устройством ввода в персональном компьютере.

Принтер: устройство вывода данных на бумажный носитель.

Для удобстваработы пользователя в состав персонального компьютера введены графический манипулятор и дисплей.

Графический манипулятор: функциональное устройство, обеспечивающее перемещение графического указателя по экрану дисплея и выдачу программе сигнала на выполнение указанной графическим указателем команды.

Конструктивные реализации графического манипулятора: мышь (mouse), трекбол (trackball), прикосновительная прокладка (touch pad).

Графический указатель: значок, с помощью которого пользователь определяет для программ объект, над которым должна быть выполнена указанная пользователем операция.

Дисплей: функциональное устройство компьютера, обеспечивающее визуальное отображение на экране информации, позволяющей пользователю эффективно использовать возможности компьютера.

Как можно видеть, графический указатель и дисплей не выполняют ни одну из 4-х функций устройства обработки данных.

Привод флоппи-диска: устройство ввода-вывода для обмена данными с внешним носителем данных на базе флоппи-диска (дискеты).

Привод CD -диска: устройство ввода-вывода для обмена данными с внешним носителем данных на базе CD-диска.

Базовая конфигурация персонального компьютера: минимальный набор функциональных устройств, поставляемый покупателю.

Базовый набор меняется в соответствии с технологическими возможностями производителей. В настоящее время в базовую конфигурацию входят: ядро, дисплей, привод CD (DVD) – диска. Привод флоппи-диска уже не всегда поставляется в составе компьютера при продаже.

Модем: устройство ввода-вывода для обмена данными компьютера с каналами аналоговых сигналов (преобразования аналоговых сигналов в дискретные и наоборот).

Магистрально – модульный принцип организации компьютера объединяет функциональный и конструктивный аспекты организации компьютера.

Модуль: функциональный элемент компьютера, реализованный в виде определённой конструкции.

Например, процессор реализован на микросхеме, которая конструктивно оформлена в виде параллелепипеда с множеством контактов для электрического соединения с другими функциональными элементами и вставляется в разъём. Привод CD-диска, DVD-диска, жёсткий магнитный диск выполнены в виде параллелепипедов- коробочек.

Компьютер, как техническая система, должен иметь в своём составе модули, реализующие вспомогательные функции: охлаждение различных устройств (принудительное), защита человека от облучения, соединение всех модулей в виде удобной для установки и переноса конструкции (сборочные элементы).

Каждое функциональное устройство может быть реализовано на различных физических принципах и иметь различное конструктивное исполнение. Сборка компьютера выполняется путём установки и закрепления модулей в сборочных элементах. Ремонт компьютера выполняется на уровне замены модулей.

Сборочные элементы персонального компьютера: системный блок, материнская плата, корпус дисплея, корпус модема.

18.2. Назначение контроллера функционального устройства

В современных персональных компьютерах каждое функциональное устройство компьютера подключается к системной магистрали (Рис. 18.2.1.).


Рис. 18.2.1.

Чтобы можно было управлять функциональным устройством, выдавать ему команды, получать от него информацию о результатах исполнения команд, при необходимости выдавать ему данные или принимать от него данные, между ним и системной магистралью должен происходить обмен сигналами, как управляющими, так и информационными. Естественно, обмен этими сигналами должен происходить по определённым правилам.

Интерфейс: правила взаимодействия между собой технических или программных средств.

В связи с увеличением спроса на компьютеры возникли новые фирмы-разработчики. Результатом их работы стало появление компьютерных платформ и семейств компьютеров с разными интерфейсами у системных магистралей. При этом производители функциональных устройств оказались в сложной ситуации. Им приходилось выпускать разные промышленные изделия, обладающие одинаковыми функциями. Для снижения производственных затрат было найдено следующее решение. Функциональное устройство разделяется на 2 части (Рис. 18.2.2.). Первая часть обладает всеми необходимыми функциями и имеет базовый постоянный интерфейс. Эта часть наиболее сложная и, как правило, определяет стоимость всего функционального устройства. Вторая часть, называемая контроллером , обеспечивает лишь согласование базового аппаратного интерфейса функционального устройства с интерфейсом системной магистрали конкретной компьютерной платформы.

Таким образом, производитель может выпускать одно сложное изделие и несколько простых, которые обеспечивают применение одного сложного устройства в компьютерах с различными интерфейсами системных магистралей.


Рис. 18.2.2.

Применительно к дисплеям эта идея была развита (Рис. 18.2.3.). Контроллер – видеоадаптер (видеоконтроллер) является настолько сложным изделием, что выпускается третьими производителями, но его интерфейс с дисплеями стандартизован. По этой причине производители дисплеев не выпускают видеоконтроллеры.

Введение
3

1. Общая структура персонального компьютера
4

1.1. Основы архитектуры ЭВМ 4

1.2. Структура ПК
6

2. Характеристики основных модулей ПК
8

2.1. Материнская плата 8

2.2. Процессор 9

2.3. Память 11

2.4. Винчестер 12

2.6. Монитор 14

2.7. Манипуляторы 14

Заключение 15

Список использованной литературы 16

Введение

Современные компьютеры массового применения – персональные компьютеры имеют достаточно сложную структуру, которая определяет взаимосвязь между аппаратными средствами в технической системе, называемой компьютером. В процессе эволюции аппаратных и программных средств изменялась и структура персонального компьютера, однако без изменений остались пока основные принципы его структурной организации, сформулированные выдающимся математиком, профессором Принстонского университета США Джоном фон Нейманом (1903–1957) и его коллегами в 1946 г.

Сущность этих принципов сводится к следующему:

Информация представляется (кодируется) и обрабатывается (выполняются вычислительные и логические операции) в двоичной системе счисления, информация разбивается на отдельные машинные слова, каждое из которых обрабатывается в компьютере как единое целое;

Машинные слова, представляющие данные (числа) и команды (определяют наименование задаваемых операций), различаются по способу использования, но не по способу кодирования;

Машинные слова размещаются и хранятся в ячейках памяти компьютера под своими номерами, называемыми адресами слов;

Последовательность команд (алгоритм) определяет наименование производимых операций и слова (операнды), над которыми производятся эти операции, при этом алгоритм, представленный в форме операторов машинных команд, называется программой;

Порядок выполнения команд однозначно задается программой.

1. Общая структура персонального компьютера

1.1. Основы архитектуры ЭВМ

Составные части, из которых состоит компьютер, называют модулями. Среди всех модулей выделяют основные модули, без которых работа компьютера невозможна, и остальные модули, которые используются для решения различных задач: ввода и вывода графической информации, подключения к компьютерной сети и т.д.

В основу построения большинства ЭВМ положены принципы, сформулированные в 1945 г. Джоном фон Нейманом:

1 . Принцип программного управления (программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в заданной последовательности).

2 . Принцип однородности памяти (программы и данные хранятся в одной и той же памяти; над командами можно выполнять такие же действия, как и над данными).

3 . Принцип адресности (основная память структурно состоит из пронумерованных ячеек).

ЭВМ, построенные на этих принципах, имеют классическую архитектуру (рис.1).

Рис. 1. Классическая структура компьютера

где, АЛУ (арифметико-логическое устройство) – выполняет арифметические и логические операции над информацией, представленной в двоичном коде, т. е. обеспечивает выполнение процедур по обработке данных;

УУ (устройство управления) – организует процесс выполнения программ;

ЗУ (запоминающее устройство) – предназначено для размещения и хранения последовательности команд (программ) и данных;

УВВ (устройства ввода-вывода) – обеспечивают ввод и вывод данных из компьютера для установления прямой и обратной связи между пользователем и компьютером;

С помощью какого-либо устройства ввода в ЗУ вводится программа. УУ считывает содержимое ячейки памяти ЗУ, где находится первая команда, и организует ее выполнение. Эта команда может задавать выполнение арифметических и логических операций над данными с помощью АЛУ, чтение из памяти данных для выполнения этих операций, вывод данных на устройство вывода и т. д. Затем выполняется вторая команда, третья и т. д. УУ выполняет инструкции программы автоматически.


1.2. Структура ПК

Рис. 2. Общая структура ПК

Персональные компьютеры обычно состоят из следующих основных модулей, представленных на рисунке 3.

Системный блок Монитор Клавиатура мышь
Рис. 3. Основные модули ПК

Рис. 4. Компьютер в компактном исполнении (notebook)
В системном блоке находятся все основные узлы компьютера:

      материнская плата;

      электронные схемы (процессор, контроллеры устройств и т.д.);

      блок питания;

      дисководы (накопители).

2. Характеристики основных модулей ПК

2.1. Материнская плата

Материнская (системная, главная) плата является центральной частью любого компьютера. На материнской плате размещаются в общем случае центральный процессор, сопроцессор, контроллеры, обеспечивающие связь центрального процессора с периферийными устройствами, оперативная память (RAM), кэш-память, элемент ROM-BIOS (базовой системы ввода/вывода), аккумуляторная батарея, кварцевый генератор тактовой частоты и слоты (разъемы) для подключения других устройств.


Рис. 6. Материнская плата

Общая производительность материнской платы определяется не только тактовой частотой , но и количеством (разрядностью ) данных , обрабатываемых в единицу времени центральным процессором, а также разрядностью шины обмена данных между различными устройствами материнской платы.

По функциональному назначению шины делятся на:

      шину данных;

      адресную шину;

      шину управления.

По шине данных происходит обмен данными между центральным процессором, картами расширения и памятью. Разрядность шины данных варьируется от 8-ми битов (сейчас не используется) до 64-х битов в материнских платах современных PC.

По адресной шине происходит адресация ячеек памяти, в которые производится запись данных.

По шине управления или системной шине происходит передача управляющих сигналов между центральным процессором и периферией. На материнской плате системная шина заканчивается слотами для установки других устройств. Адресные шины и шины данных иногда занимают одни и те же физические проводники.

В настоящее время существует несколько стандартов шин: ISA (Industry Sland art Architecture), MCA (MicroChannel Architecture), EISA (Extended ISA), VESA (Video Electronics SlandarlAssollallon), PCI (Peripheral Component Interconnect), USB (Universal Serial BUS).

Архитектура материнских плат постоянно совершенствуется: увеличивается их функциональная насыщенность, повышается производительность. Стало стандартом наличие на материнской плате таких встроенных устройств, как двухканальный E-IDE-контроллер HDD (жёстких дисков), контроллер FDD (гибких (floppy) дисков), усовершенствованного параллельного (LPT) и последовательного (COM) портов, а также последовательного инфракрасного порта.

Порт – многоразрядный вход или выход в устройстве.

2.2. Процессор

В общем случае под процессором понимают устройство, производящее набор операций над данными, представленными в цифровой форме (двоичным кодом). Применительно к вычислительной технике под процессором понимают центральное процессорное устройство (CPU ), обладающее способностью выбирать, декодировать и выполнять команды а также передавать и принимать информацию от других устройств. Проще говоря, процессор – это электронная схема, выполняющая обработку информации.

Производство современных персональных компьютеров начались тогда, когда процессор был выполнен в виде отдельной микросхемы.

Количество фирм, разрабатывающих и производящих процессоры для IBM-совместимых компьютеров, невелико. В настоящее время известны: Intel, Cyrix, AMD, NexGen, Texas Instrument.

Кроме процессоров, которые составляют основу IBM-совместимых персональных компьютеров, существует целый класс процессоров, составляющих параллельную платформу. Среди самых известных: персональные компьютеры американской фирмы Apple, для которых используются процессоры типа Power PC, имеющие принципиально другую архитектуру; ПК выпускаемые фирмой Motorola и др. Производительность персональных компьютеров на основе процессоров Power PC значительно выше, чем у IBM-совместимых, поэтому, несмотря на значительную разницу в цене, для серьезных профессиональных приложений им отдают предпочтение.

Производительность CPU характеризуется следующими основными параметрами:

    тактовой частотой;

    степенью интеграции;

    внутренней и внешней разрядностью обрабатываемых данных;

    памятью, к которой может адресоваться CPU.

С бурным развитием мультимедиа приложений перед разработчиками процессоров возникли проблемы увеличения скорости обработки огромных массивов данных, содержащих графическую, звуковую или видео информацию. В результате возникли дополнительно устанавливаемые специальные процессоры DSP.

2.3. Память

Центральный процессор имеет доступ к данным, находящимся в оперативной памяти (физическое устройство памяти называется ОЗУ- оперативное запоминающее устройство или RAM – Random Access Memory). Работа компьютера с пользовательскими программами начинается после того как данные будут считаны из внешней памяти в ОЗУ.

ОЗУ работает синхронно с центральным процессором и имеет малое время доступа. Оперативная память сохраняет данные только при включенном питании. Отключение питания приводит к необратимой потере данных, поэтому пользователю, работающему с большими массивами данных в течение длительного времени, рекомендуют периодически сохранять промежуточные результаты на внешнем носителе.

По способу реализации оперативная память делится на динамическую и статическую.

Основными характеристиками ОЗУ являются: количество ячеек памяти (адреса) и время доступа к информации, определяемое интервалом времени, в течение которого информация записывается в память или считывается из нее.

Основой ОЗУ являются микросхемы памяти (chips ), которые объединяются в блоки (банки) различной конфигурации. При комплектации банков различными микросхемами необходимо следить, чтобы время доступа у них не различалось больше, чем на 10 нс.

Для нормального функционирования системы большое значение имеет согласование быстродействия центрального процессора и ОЗУ.


Рис.7. Оперативная память

Кэш-память предназначена для согласования скорости работы сравнительно медленных устройств, таких, например как динамическая память с быстрым микропроцессором. Использование кэш-памяти позволяет избежать циклов ожидания в его работе, которые снижают производительность всей системы.

С помощью кэш-памяти обычно делается попытка согласовать также работу внешних устройств, например, различных накопителей, и микропроцессора. Соответствующий контролер кэш-памяти должен заботиться о том, чтобы команды и данные, которые будут необходимы микропроцессору в определенный момент времени, именно к этому моменту оказывались в кэш-памяти.

2.4. Винчестер

Винчестеры или накопители на жестких дисках – это внешняя память большого объема, предназначенная для долговременного хранения информации, объединяющая в одном корпусе сам носитель информации и устройство записи/чтения. По сравнению с дисководами винчестеры обладают рядом очень ценных преимуществ: объем хранимых данных неизмеримо больше, время доступа у винчестера на порядок меньше. Единственный недостаток: они не предназначены для обмена информацией (это касается стационарных, т.е. встраиваемых в корпус компьютера винчестеров, в настоящее время существуют сменные винчестеры).

Физические размеры винчестеров стандартизированы параметром, который называют форм-фактором (form factor).

На рисунке 8 представлены различные жесткие диски:

Рис. 8. Винчестеры
2.5. Клавиатура

Рис. 9. Клавиатура

Она является основным устройством ввода информации в PC, несмотря на сильную конкуренцию со стороны мыши. Клавиатура преобразует механическое нажатие клавиши в так называемый скэн-код, который передается в контроллер клавиатуры на материнской плате.

Контроллер в свою очередь инициализирует аппаратное прерывание, которое обслуживается специальной программой, входящей в состав ROM-BIOS. При поступлении скэн-кода от клавиш сдвига (/) или переключателя (,) изменение статуса клавиатуры записывается в ОЗУ. Во всех остальных случаях скэн-код трансформируется в ASCII-коды или расширенные коды, которые уже обрабатываются прикладной программой.

По конструктивному исполнению различают следующие виды клавиатуры: клавиатуры с пластмассовыми штырями, клавиатуры со щелчком, клавиатуры на микропереключателях или герконах, сенсорные клавиатуры. Клавиатуры различаются также количеством и расположением клавиш. Различают клавиатуры типа СГ, AT, MFII.

В настоящее время существуют некоторые другие виды клавиатур: эргономические клавиатуры, промышленные, со считывающим устройством штрихового кода, для слепых, инфракрасные (беспроводные) и т.п.

2.6. Монитор

Мониторы являются важнейшими устройствами отображения информации. В настоящее время существует большое разнообразие типов мониторов: Цифровые мониторы (TTL), Аналоговые мониторы, Жидкокристаллические дисплеи (LCD) (рис. 10).

Рис. 10. Мониторы

2.7. Манипуляторы

К данным устройствам можно отнести мышь, джойстик, трекбол. Данные устройства управляют курсором и представлены на рисунке 11.

Рис. 11. Устройства управления курсором

Заключение

Таким образом, в системном блоке стационарного персонального компьютера размещаются основные компоненты, обеспечивающие выполнение компьютерных программ на аппаратном уровне.

Внешние устройства (по отношению к системному блоку) по функциональному назначению можно представить в виде нескольких групп: устройства ввода и вывода информации, устройства, выполняющие одновременно функции ввода и вывода информации, внешние запоминающие устройства.

К устройствам ввода информации относятся клавиатура, координатные устройства ввода (манипуляторы типа мышь, трекбол, контактная или сенсорная панель, джойстик), сканер, цифровые камеры (видеокамеры и фотоаппараты), микрофон.

К устройствам вывода информации относятся монитор, печатающие устройства (ПУ, принтер и графопостроитель), звуковые колонки и наушники.

К устройствам, выполняющим функции ввода и вывода информации относятся сетевой адаптер, модем (модулятор – демодулятор), звуковая плата.

К внешним запоминающим устройствам относятся: внешние накопители на гибких и жестких магнитных дисках, внешние накопители на оптических и магнитооптических дисках, накопители на основе флэш-памяти и т. д.

Список использованной литературы

1. Губарев В.Г. Программное обеспечение и операционные системы ПК. М.: Феникс, 2012. 382 с.

2. Фигурнов В. Э. IBM PC для пользователя, 6-е издание, переработанное и дополненное. M.: Инфра-М, 2006. 432с.

3. Уинн Л. Рош. Библия по модернизации персонального компьютера. М.: Тивали-Стиль, 2005. 378 с.

4. Леонтьев В.П. Новейшая энциклопедия персонального компьютера 2003. М.: ОЛМА-ПРЕСС, 2009. 957 с.

5. Ибрагим К.Ф. Устройство и настройка ПК: Перевод с английского. М.: Бином, 2010. 368 с.

6. Столлингс У. Структурная организация и архитектура компьютерных систем. М.: Вильямс, 2012. 896 с.

7. Леонтьев Б.К. Upgrade: Пособие по модернизации компонентов персонального компьютера. М.: Майор, 2013. 624 с.

8. Шумилин В.К. Пособие по безопасной работе на персональных компьютерах. М.: НЦ ЭНАС, 2011. 28 с.

9. Еремин Е.А. Популярные лекции об устройстве компьютера. БХВ-Петербург, 2013. 272 с.

Основная образовательная программа

Хозяйства России. Отраслевая структура , функциональная и территориальная структуры хозяйства страны, ... персональными компьютерами , и проекторами. Для директора и заместителей директора приобретены ноутбуки. Общая численность персональных компьютеров , ...

Слово «компьютер» означает «вычислитель», т.е. устройство для вычислений. Потребность в автоматизации обработки данных, в том числе вычислений, возникла очень давно. Многие тысячи лет назад для счета использовались счетные палочки, камешки и. т.д. Более 1500 лет тому назад (а может быть и значительно раньше) для облегчения стали использовать счеты.

Таким образом, попытки автоматизировать вычислительные процессы предпринимались на всех этапах развития человеческой цивилизации.

VI в. до н. э. — Пифагор ввел понятие числа как основу всего сущего на земле.

V в. до н. э. — остров Саламин — первый прибор для счета «абак».

IV в. до н. э. — Аристотель разработал дедуктивную логику.

III в. до н. э. — Диофант Александрийский написал «Арифметику» в 13 книгах.

IX в. — Аль-Хорезми обобщил достижение арабской математики и ввел понятие алгебры.

XV в. — Леонардо да Винчи разработал проект счетной машины для выполнения действий над 12- разрядными числами.

XVI в. — изобретены русские счеты с 10-чной системой счисления.

XVII в. — Англия — логарифмические линейки.

Начало развития технологий вычислительной техники принято считать с Блеза Паскаля, который в 1642г. изобрел устройство, механически выполняющее сложение чисел.

Следующего этапного результата добился выдающийся немецкий математик и философ Готфрид Вильгельм Лейбниц, высказавший в 1672 году идею механического умножения без последовательного сложения. Уже через год он представил машину, которая позволяла механически выполнять четыре арифметических действия, в Парижскую академию. Машина Лейбница требовала для установки специального стола, так как имела внушительные размеры: 100 ´ 30 ´ 20 сантиметров.

В 1812 году английский математик Чарльз Бэббидж начал работать над так называемой разностной машиной, которая должна была вычислять любые функции, в том числе и тригонометрические, а также составлять таблицы.

Уроженец Эльзаса Карл Томас, основатель и директор двух парижских страховых обществ в 1818 году сконструировал счетную машину, уделив основное внимание технологичности механизма, и назвал ее арифмометром.

В первые десятилетия XX века конструкторы обратили внимание на возможность применения в счетных устройствах новых элементов – электромагнитных реле. В 1941 году немецкий инженер Конрад Цузе, построил вычислительное устройство, работающее на таких реле.

Почти одновременно, в 1943 году, американец Говард Эйкен с помощью работ Бэббиджа на основе техники XX века – электромеханических реле – смог построить на одном из предприятий фирмы IBM легендарный гарвардский «Марк-1» (а позднее еще и «Марк-2»). «Марк-1» имел в длину 15 метров и в высоту 2,5 метра, содержал 800 тысяч деталей, располагал 60 регистрами для констант, 72 запоминающими регистрами для сложения, центральным блоком умножения и деления, мог вычислять элементарные трансцендентные функции. Машина работала с 23-значными десятичными числами и выполняла операции сложения за 0,3 секунды, а умножения – за 3 секунды.

Работа по созданию первой электронновычислительной машины была начата, по-видимому, в 1937 году в США профессором Джоном Атанасовым, болгарином по происхождению. Эта машина была специализированной и предназначалась для решения задач математической физики. В ходе разработок Атанасов создал и запатентовал первые электронные устройства, которые впоследствии применялись довольно широко в первых компьютерах. Полностью проект Атанасова не был завершен, однако через три десятка лет в результате судебного разбирательства профессора признали родоначальником электронной вычислительной техники.

Начиная с 1943 года группа специалистов под руководством Говарда Эйкена, Дж. Моучли и П. Эккерта в США начала конструировать вычислительную машину на основе электронных ламп, а не на электромагнитных реле. Эта машина была названа ENIAC (Electronic Numeral Integrator And Computer) и работала она в тысячу раз быстрее, чем «Марк-1». ENIAC содержал 18 тысяч вакуумных ламп, занимал площадь 9 ´ 15 метров, весил 30 тонн и потреблял мощность 150 киловатт.

В 1945 году к работе над созданием ЭВМ был привлечен знаменитый математик Джон фон Нейман, который подготовил доклад об этой машине. В этом докладе фон Нейман ясно и просто сформулировал общие принципы функционирования универсальных вычислительных устройств, т.е. компьютеров. Это первая действующая машина, построенная на вакуумных лампах, официально была введена в эксплуатацию 15 февраля 1946 года. Эту машину пытались использовать для решения некоторых задач, подготовленных фон Нейманом и связанных с проектом атомной бомбы. Затем она была перевезена на Абердинский полигон, где работала до 1955 года.

ENIAC стал первым представителем 1-го поколения компьютеров. Любая классификация условна, но большинство специалистов согласилось с тем, что различать поколения следует исходя из той элементной базы, на основе которой строятся машины. Таким образом, первое поколение представляется ламповыми машинами.

Устройство и работа компьютера по «принципу фон Неймана». Отметим важнейшие из них:

    машины на электронных элементах должны работать не в десятичной, а в двоичной системе счисления;

    программа, как и исходные данные, должна размещаться в памяти машины;

    программа, как и числа, должна записываться в двоичном коде;

    трудности физической реализации запоминающего устройства, быстродействие которого соответствует скорости работы логических схем, требуют иерархической организации памяти (то есть выделения оперативной, промежуточной и долговременной памяти);

    арифметическое устройство (процессор) конструируется на основе схем, выполняющих операцию сложения; создание специальных устройств для выполнения других арифметических и иных операций нецелесообразно;

    в машине используется параллельный принцип организации вычислительного процесса (операции над числами производятся одновременно по всем разрядам).

    Первый компьютер, в котором были воплощены принципы фон Неймана, был построен в 1949 году английским исследователем Морисом Уилксом. С той поры компьютеры стали гораздо более мощными, но подавляющее большинство из них сделано в соответствии с теми принципами, которые изложил в своем докладе в 1945 года Джон фон Нейман.

    Новые машины первого поколения сменяли друг друга довольно быстро. В 1951 году заработала первая советская электронная вычислительная машина МЭСМ, площадью около 50 квадратных метров.

    В 1952 году на свет появилась американская машина EDWAC.

    В 1952 году советские конструкторы ввели в эксплуатацию БЭСМ – самую быстродействующую машину в Европе, а в следующем году в СССР начала работать «Стрела» – первая в Европе серийная машина высокого класса. Среди создателей отечественных машин в первую очередь следует назвать имена С.А. Лебедева, Б.Я. Базилевского, И.С. Брука, Б.И. Рамеева, В.А. Мельникова, М.А. Карцева, А.Н. Мямлина. В 50-х годах появились и другие ЭВМ: «Урал», М-2, М-3, БЭСМ2, «Минск1», – которые воплощали в себе все более прогрессивные инженерные решения.

    Проекты и реализация машин «Марк–1», EDSAC и EDVAC в Англии и США, МЭСМ в СССР заложили основу для развёртывания работ по созданию ЭВМ вакуумноламповой технологии – серийных ЭВМ первого поколения. Разработка первой электронной серийной машины UNIVAC (Universal Automatic Computer) была начата примерно в 1947 г. Эккертом и Маучли. Первый образец машины (UNIVAC-1) был построен для бюро переписи США и пущен в эксплуатацию весной 1951 г. Синхронная, последовательного действия вычислительная машина UNIVAC-1 создана на базе ЭВМ ENIAC и EDVAC. Работала она с тактовой частотой 2,25 МГц и содержала около 5000 электронных ламп.

    По сравнению с США, СССР и Англией развитие электронной вычислительной техники в Японии, ФРГ и Италии задержалось. Первая японская машина «Фуджик» была введена в эксплуатацию в 1956 году, серийное производство ЭВМ в ФРГ началось лишь в 1958 году.

    Элементной базой второго поколения стали полупроводники. Без сомнения, транзисторы можно считать одним из наиболее впечатляющих чудес XX века.

    Патент на открытие транзистора был выдан в 1948 году американцам Д. Бардину и У.Браттейну, а через восемь лет они вместе с теоретиком В. Шокли стали лауреатами Нобелевской премии..

    Первая бортовая ЭВМ для установки на межконтинентальной ракете – «Атлас» – была введена в эксплуатацию в США в 1955 году. В машине использовалось 20 тысяч транзисторов и диодов, она потребляла 4 киловатта.

    В 1956 г. фирмой IBM были разработаны плавающие магнитные головки на воздушной подушке. Изобретение их позволило создать новый тип памяти – дисковые запоминающие устройства, значимость которых была в полной мере оценена в последующие десятилетия развития вычислительной техники. Первые запоминающие устройства на дисках появились в машинах IBM-305 и RAMAC.

    Первые серийные универсальные ЭВМ на транзисторах были выпущены в 1958 году одновременно в США, ФРГ и Японии.

    В Советском Союзе первые безламповые машины «Сетунь», «Раздан» и «Раздан2» были созданы в 19591961 годах. В 60-х годах советские конструкторы разработали около 30 моделей транзисторных компьютеров, большинство которых стали выпускаться серийно. Наиболее мощный из них – «Минск32» выполнял 65 тысяч операций в секунду. Появились целые семейства машин: «Урал», «Минск», БЭСМ.

    Рекордсменом среди ЭВМ второго поколения стала БЭСМ6, имевшая быстродействие около миллиона операций в секунду – одна из самых производительных в мире. Архитектура и многие технические решения в этом компьютере были настолько прогрессивными и опережающими свое время, что он успешно использовался почти до нашего времени.

    Специально для автоматизации инженерных расчетов в Институте кибернетики Академии наук УССР под руководством академика В.М. Глушкова были разработаны компьютеры МИР (1966) и МИР-2 (1969). Важной особенностью машины МИР-2 явилось использование телевизионного экрана для визуального контроля информации и светового пера, с помощью которого можно было корректировать данные прямо на экране.

    Приоритет в изобретении интегральных схем, ставших элементной базой ЭВМ третьего поколения, принадлежит американским ученым Д. Килби и Р. Нойсу, сделавшим это открытие независимо друг от друга. Массовый выпуск интегральных схем начался в 1962 году, а в 1964 начал быстро осуществляться переход от дискретных элементов к интегральным. Упоминавшийся выше ЭНИАК размерами 9 ´ 15 метров в 1971 году мог бы быть собран на пластине в 1,5 квадратных сантиметра. Началось перевоплощение электроники в микроэлектронику.

    Несмотря на успехи интегральной техники и появление мини-ЭВМ, в 60-х годах продолжали доминировать большие машины. Таким образом, третье поколение компьютеров, зарождаясь внутри второго, постепенно вырастало из него.

    Первая массовая серия машин на интегральных элементах стала выпускаться в 1964 году фирмой IBM. Эта серия, известная под названием IBM-360, оказала значительное влияние на развитие вычислительной техники второй половины 60-х годов. Она объединила целое семейство ЭВМ с широким диапазоном производительности, причем совместимых друг с другом. Последнее означало, что машины стало возможно связывать в комплексы, а также без всяких переделок переносить программы, написанные для одной ЭВМ, на любую другую из этой серии. Таким образом, впервые было выявлено коммерчески выгодное требование стандартизации аппаратного и программного обеспечения ЭВМ.

    В СССР первой серийной ЭВМ на интегральных схемах была машина «Наири-3», появившаяся в 1970 году.

    Со второй половины 60-х годов Советский Союз совместно со странами СЭВ приступил к разработке семейства универсальных машин, аналогичного системе ibm-360. В 1972 году началось серийное производство стартовой, наименее мощной модели Единой Системы – ЭВМ ЕС-1010, а еще через год – пяти других моделей. Их быстродействие находилась в пределах от десяти тысяч (ЕС-1010) до двух миллионов (ЕС-1060) операций в секунду.

    В рамках третьего поколения в США была построена уникальная машина «ИЛЛИАК-4», в составе которой в первоначальном варианте планировалось использовать 256 устройств обработки данных, выполненных на монолитных интегральных схемах.

    Начало 70-х годов знаменует переход к компьютерам четвертого поколения – на сверхбольших интегральных схемах (СБИС). Другим признаком ЭВМ нового поколения являются резкие изменения в архитектуре.

    Техника четвертого поколения породила качественно новый элемент ЭВМ – микропроцессор. В 1971 году пришли к идее ограничить возможности процессора, заложив в него небольшой набор операций, микропрограммы которых должны быть заранее введены в постоянную память.

    Из больших компьютеров четвертого поколения на сверхбольших интегральных схемах особенно выделялись американские машины «Крей-1» и «Крей-2», а также советские модели «Эльбрус-1» и «Эльбрус-2». Первые их образцы появились примерно в одно и то же время – в 1976 году. Все они относятся к категории суперкомпьютеров, так как имеют предельно достижимые для своего времени характеристики и очень высокую стоимость.

    В машинах четвертого поколения сделан отход от архитектуры фон Неймана, которая была ведущим признаком подавляющего большинства всех предыдущих компьютеров.

    Хотя и персональные компьютеры относятся к ЭВМ 4-го поколения, все же возможность их широкого распространения, несмотря на достижения технологии СБИС, оставалась бы весьма небольшой.

    В 1970 году был сделан важный шаг на пути к персональному компьютеру – Маршиан Эдвард Хофф из фирмы Intеl сконструировал интегральную схему, аналогичную по своим функциям центральному процессору большого компьютера. Так появился первый микропроцессор Intеl 4004, который был выпущен в продажу в 1971 г. Это был настоящий прорыв, ибо микропроцессор Intеl 4004 размером менее 3 см был производительнее гигантских машин 1-го поколения. Правда, возможности Intе1 4004 были куда скромнее, чем у центрального процессора больших компьютеров того времени, – он работал гораздо медленнее и мог обрабатывать одновременно только 4 бита информации (процессоры больших компьютеров обрабатывали 16 или 32 бита одновременно), но и стоил он в десятки тысяч раз дешевле. Но рост производительности микропроцессоров не заставил себя ждать.

    Первый массовым персональным компьютером был «Altair-8800», созданный в 1974 году небольшой компанией в Альбукерке (штат Нью-Мексико).

    В 1981 году появилась первая версия операционной системы для компьютера IBM РС – MS DOS 1.0. В дальнейшем по мере совершенствования компьютеров IВМ РС выпускались и новые версии DOS, учитывающие новые возможности компьютеров и предоставляющие дополнительные удобства пользователю.

    В августе 1981 г. новый компьютер под названием «IВМ Personal Computer» был официально представлен публике и вскоре после этого он приобрел большую популярность у пользователей. IBM PC имел 64 Кб оперативной памяти, магнитофон для загрузки/сохранения программ и данных, дисковод и встроенную версию языка BASIС.

    Через один – два года компьютер IВМ РС занял ведущее место на рынке, вытеснив модели 8-битовых компьютеров.

    Новое поколение микропроцессоров идет на смену предыдущему каждые два года и морально устаревает за 3 – 4 года. Микропроцессор вместе с другими устройствами микроэлектроники позволяют создать довольно экономичные информационные системы.

    8 ноября 1993 – выпуск Windows for Workgrounds 3.11. В ней обеспечена более полная совместимость с NetWare и Windows NT; кроме того, в архитектуру ОС внесены многие изменения, направленные на повышение производительности и стабильности и позднее нашедшее применения в Windows 95. Продукт был гораздо более доброжелательно встречен корпоративной Америкой.

    В 1993 году появились первые процессоры Pentium с частотой 60 и 66 МГц – это были 32-разрядные процессоры с 64-битной шиной данных.

    С того времени эвм развивается огромными темпами. Частота работы процессов уже достигла 3,5 ГГц, а емкость озу порядка 8 Гб.

    2.

    2.1. Понятие и общая характеристика функциональной структуры компьютера

    Разнообразие современных компьютеров очень велико. Но их структуры основаны на общих логических принципах, позволяющих выделить в любом компьютере следующие главные устройства:

    память (запоминающее устройство, ЗУ), состоящую из перенумерованных ячеек;

    процессор, включающий в себя устройство управления (УУ) и арифметико-логическое устройство (АЛУ);

    устройство ввода;

    устройство вывода.

    Эти устройства соединены каналами связи, по которым передается информация.

    Рис. 1. Общая схема компьютера

    Функции памяти:

    приём информации из других устройств;

    запоминание информации;

    – выдача информации по запросу в другие устройства машины.

    Функции процессора:

    обработка данных по заданной программе путем выполнения арифметических и логических операций;

    программное управление работой устройств компьютера.

    Та часть процессора, которая выполняет команды, называется арифметико-логическим устройством (АЛУ), а другая его часть, выполняющая функции управления устройствами, называется устройством управления (УУ).

    Обычно эти два устройства выделяются чисто условно, конструктивно они не разделены.

    В составе процессора имеется ряд специализированных дополнительных ячеек памяти, называемых регистрами.

    Регистр выполняет функцию кратковременного хранения числа или команды.

    Первым человеком сформулировавшим основные принципы функционирования универсальных вычислительных устройств, т.е. компьютеров, был знаменитый математик Джон фон Нейман.

    Прежде всего, современный компьютер должен иметь следующие устройства:

    арифметическо-логическое устройство, выполняющее арифметические и логические операции;

    устройства управления, которое организует процесс выполнения программ;

    запоминающее устройство, или память для хранения программ и данных;

    внешние устройства для ввода-вывода информации .

    В общих чертах принцип работы компьютера можно описать следующим образом.

    Вначале с помощью какого-либо внешнего устройства в память компьютера вводится программа. Устройство управления считывает содержимое ячейки памяти, где находится первая инструкция (команд) программы, и организует ее выполнение. Эта команда может задавать выполнение арифметических или логических операций, чтение из памяти данных для выполнения арифметических или логических операций или запись их результатов в память, ввод данных из внешнего устройства в память или вывод данных из памяти на внешнее устройство

    Как правило, после выполнения одной команды устройство управления начинает выполнять команду из ячейки памяти, которая находится непосредственно за только что выполненной командой. Однако этот порядок может быть изменен с помощью команд передачи управления (перехода). Эти команды указывают устройству управления, что ему следует продолжить выполнение программы, начиная с команды, содержащейся в некоторой другой ячейке памяти. Такой «скачок», или переход, в программе может выполняться не всегда, а только при выполнении некоторых условий, например, если некоторые числа равны, если в результате предыдущей арифметической операции получился нуль и т.д. Это позволяет использовать одни и те же последовательности команд в программе много раз (т.е. организовывать циклы), выполнять различные последовательности команд в зависимости от выполнения определенных условий и т.д., т.е. создавать сложные программы.

    Таким образом, управляющее устройство выполняет инструкции программы автоматически, т.е. вмешательства человека. Оно может обмениваться информацией с оперативной памятью и внешними устройствами компьютера. Поскольку внешние устройства, как правило работают значительно медленнее, чем остальные части компьютера, управляющее устройство может приостанавливать выполнение программы до завершения операции ввода-вывода с внешним устройством. Все результаты выполненной программы должны быть ею выведены на внешние устройства компьютера, после чего компьютер переходит к ожиданию каких-либо сигналов внешних устройств.

    В современных компьютерах арифметическо-логическое устройство и устройство управления объединены в единое устройство-центральный процессор. Кроме того, процесс выполнения программ может прерываться для выполнения неотложных действий, связанных с поступившими сигналами от внешних устройств компьютера–прерываний.

    Многие быстродействующие компьютеры осуществляют параллельную обработку данных на нескольких процессорах.

    Тем не менее, большинство современных компьютеров в основных чертах соответствуют принципам, изложенным фон Нейманом.

    2.2. Структурная организация

    Рассмотрим устройство компьютера на примере самой распространенной компьютерной системы - персонального компьютера.

    Персональные компьютеры обычно проектируются на основе принципа открытой архитектуры.

    Принцип открытой архитектуры заключается в следующем:

    регламентируются и стандартизируются только описание принципа действия компьютера и его конфигурация (определенная совокупность аппаратных средств и соединений между ними). Таким образом, компьютер можно собирать из отдельных узлов и деталей, разработанных и изготовленных независимыми фирмами-изготовителями;

    компьютер легко расширяется и модернизируется за счёт наличия внутренних расширительных гнёзд, в которые пользователь может вставлять разнообразные устройства, удовлетворяющие заданному стандарту, и тем самым устанавливать конфигурацию своей машины в соответствии со своими личными предпочтениями .

    Упрощённая блок-схема, отражающая основные функциональные компоненты компьютерной системы в их взаимосвязи, изображена на рис. 2.



    Рис. 2 Общая структура персонального компьютера с подсоединенными периферийными устройствами

    Для того, чтобы соединить друг с другом различные устройства компьютера, они должны иметь одинаковый интерфейс (англ. interface от inter - между, и face - лицо).

    Интерфейс - это средство сопряжения двух устройств, в котором все физические и логические параметры согласуются между собой.

    Если интерфейс является общепринятым, например, утверждённым на уровне международных соглашений, то он называется стандартным.

    Каждый из функциональных элементов (память, монитор или другое устройство) связан с шиной определённого типа - адресной, управляющей или шиной данных.

    Для согласования интерфейсов периферийные устройства подключаются к шине не напрямую, а через свои контроллеры (адаптеры) и порты примерно по такой схеме:



    Рис. 3. Схема подключения интерфейсов периферийных устройств

    Контроллеры и адаптеры представляют собой наборы электронных цепей, которыми снабжаются устройства компьютера с целью совместимости их интерфейсов. Контроллеры, кроме этого, осуществляют непосредственное управление периферийными устройствами по запросам микропроцессора.

    Порты устройств представляют собой некие электронные схемы, содержащие один или несколько регистров ввода-вывода и позволяющие подключать периферийные устройства компьютера к внешним шинам микропроцессора.

    Портами также называют устройства стандартного интерфейса: последовательный, параллельный и игровой порты (или интерфейсы).

    Последовательный порт обменивается данными с процессором побайтно, а с внешними устройствами - побитно. Параллельный порт получает и посылает данные побайтно.

    К последовательному порту обычно подсоединяют медленно действующие или достаточно удалённые устройства, такие, как мышь и модем. К параллельному порту подсоединяют более «быстрые» устройства - принтер и сканер. Через игровой порт подсоединяется джойстик. Клавиатура и монитор подключаются к своим специализированным портам, которые представляют собой просто разъёмы.

    Основные электронные компоненты, определяющие архитектуру процессора, размещаются на основной плате компьютера, которая называется системной или материнской (MotherBoard). А контроллеры и адаптеры дополнительных устройств, либо сами эти устройства, выполняются в виде плат расширения (DаughterBoard - дочерняя плата) и подключаются к шине с помощью разъёмов расширения, называемых также слотами расширения (англ. slot - щель, паз).

    2.3. Основные блоки компьютера

    Любой компьютер, как правило, включает в себя три основных узла (блока):

    системный блок;

    Монитор (дисплей) для отображения информации;

  • клавиатуру для ввода цифро-буквенной информации и команд.

    Для удобства управления и используются также манипуляторы типа «мышь» и «джойстик» (последний, в основном для игр).

    Из этих частей компьютера системный блок выглядит наименее эффектно, именно он является в нем «главным» В нем располагаются все основные узлы компьютера:

    электронные схемы, управляющие работой компьютера (микропроцессор, оперативная память, контроллеры устройств и т.д.);

    блок питания, который преобразует электропитание сети в постоянный ток низкого напряжения, подаваемый на электронные схемы компьютера;

    накопители (или дисководы) для гибких магнитных дисков, используемые для чтения и записи на гибкие магнитные диски (дискеты);

    накопитель на жестком магнитном диске, предназначенный для чтения и записи на несъемный жесткий магнитный диск (винчестер);

    другие устройства.


    Рис. 4. Виды системных блоков

    Сердцем компьютера, несомненно, является центральный процессор, расположенный на системной плате внутри системного блока. Он представляет собой сверхбольшую интегральную микросхему, состоящую внутри из миллионов транзисторов. Процессор способен выполнять большое количество внешних команд и обрабатывать поступающую в виде электрических сигналов информацию. Для ускорения математических расчетов используется еще одна микросхема – математический сопроцессор, который очень существенно увеличивает скорость выполнения математических операций (вычисление синусов, косинусов, логарифмов и т.д.).


    Рис. 5. Системный блок со снятой крышкой корпуса

    Скорость процессора определяется его структурой (схемными решениями), а также внешней тактовой частотой, которая формируется генератором импульсов на системной плате. Системная (материнская) плата – основная плата компьютера, на которой располагаются микропроцессор, ОЗУ, кэш-память, шины, контроллеры.

    Для хранения выполняемых программ и исходных данных, для обработки и записи промежуточных и окончательных результатов компьютер имеется оперативная динамическая память (ОЗУ).Именно из нее процессор берет программы и исходные данные для обработки. Название «оперативная» эта память получила потому, что она работает очень быстро, так что процессору практически не приходится ждать при чтении данных из памяти или записи в память При выключении компьютера, перезагрузке, случайных сбоях по питанию все содержимое оперативной памяти стирается. Следовательно, при наборе каких-либо данных, текстов и т.д. надо периодически записывать промежуточные данные на жесткий диск или дискету.

    Для ускорения доступа к ОЗУ в современных быстродействующих компьютерах применяется специальная «сверхбыстрая» статическая память, которая называется кэш-памятью и является как бы буфером между очень быстрым процессором и более медленной оперативной памятью.

    Для связи процессора и оперативной памяти с внешними устройствами: клавиатурой, монитором, дисководами и др. используются специальные электронные схемы или платы. При этом обмен информацией между оперативной памятью и устройствами (т.е. ввод-вывод) не происходит непосредственно: между любым устройством и оперативной памятью имеются два промежуточных звена:

    1. Для каждого устройства имеется своя электронная схема, которая им управляет. Эта схема называется контролером, или адаптером. Некоторые контроллеры (например, контроллер дисков) могут управлять сразу несколькими устройствами)

    2. Все контроллеры (адаптеры) взаимодействуют с микропроцессором и оперативной памятью через системную магистраль передачи данных (шину) Сейчас большинство выпускаемых компьютеров оснащаются шинами РСI и ISA.

    Одним из контролеров, которые присутствуют почти каждом компьютере является контролер портов ввода-вывода, которые бывают следующих типов: параллельные, последовательные, игровые.

    Важным элементом компьютера является видеоадаптер (или видеокарта) которая служит для формирования видеосигналов, отображающих информацию на экране монитора. Видеоплата получает от микропроцессора команды по формированию изображения, конструирует это изображение в своей служебной памяти – видеопамяти, и одновременно преобразует содержимое видеопамяти в сигнал, подаваемый на монитор – видеосигнал

    Монитор (дисплей) компьютера предназначен для вывода на экран текстовой и графической информации.Современным типом мониторов и соответственно видеоплаты является SVGA.

    Для постоянного хранения информации, необходимой во время работы с компьютером используются накопители на жестком диске – винчестеры. На них обычно хранятся программы и файлы операционной системы, различные пакеты программ, редакторы документов, компьютерные игры и многое другое. Также в состав системного блока могут входить: накопители (на лазерных дисках – CD-ROM; внутренний на магнитной ленте– стриммер); звуковая плата для воспроизведения различных звуковых эффектов; внутренний факс-модем; сетевые платы.

    Практически каждый компьютер имеет хотя бы один флоппи-дисковод для дискет, которые позволяют переносить документы и программы с одного компьютера на другой. С дискет возможна загрузка операционной системы и различных программ.

    Для питания всех ходящих в системный блок устройств имеется мощный импульсный блок питания.

    Для того чтобы все электронные и механические устройства могли должным образом взаимодействовать между собой, они должны управляться специальными программами. Программы для внутреннего тестирования монитора (POST – процедура, Power-On-Self-Test), инициализации видеоадаптера и загрузки операционной системы с диска, а также программы выполнения базовых функций по управлению устройствами ввода-вывода хранятся на системной плате в специальной микросхеме – постоянном запоминающем устройстве.

    Совокупность этих микропрограмм называется.(BIOS или базовая система ввода-вывода). Для изменения и запоминания параметров конфигурации компьютера в BIOS есть специальная программа настройки конфигурации –SETUP. Сами параметры запоминаются в отдельной микросхеме CMOS-памяти, которая питается от специальной батарейки на системной плате.

    Для работы со многими современными программами практически обязательным является использование мыши или иного заменяющего ее устройства, т.е. указательные устройства, так как позволяют указывать на те или иные элементы на экране компьютера.

    Мышь – это манипулятор, представляющий небольшую коробочку с несколькими кнопками, легко уменьшающуюся в ладони. При перемещении мыши по поверхности на экране монитора соответственным образом передвигается указатель мыши (обычно– стрелка). Когда необходимо выполнить то или иное действие пользователь нажимает ту или иную кнопку мыши.
    Носситер Дж. Microsoft Exel 2002 –М.: Диалектика, 2003.Организация и использование корпоративных систем ОРГАНИЗАЦИЯ И ПРИНЦИПЫ ПОСТРОЕНИЯ WEB-САЙТОВ

    2014-05-25


Просмотров