Ранг матрицы. Найти ранг матрицы: способы и примеры Способы нахождения ранга матрицы

Любая матрица A порядка m×n можно рассматривать как совокупность m векторов строк или n векторов столбцов .

Рангом матрицы A порядка m×n называется максимальное количество линейно независимых векторов столбцов или векторов строк.

Если ранг матрицы A равен r , то пишется:

Нахождение ранга матрицы

Пусть A произвольная матрица порядка m ×n . Для нахождения ранга матрицы A применим к ней метод исключения Гаусса.

Отметим, что если на каком-то этапе исключения ведущий элемент окажется равным нулю, то меняем местами данную строку со строкой, в котором ведущий элемент отличен от нуля. Если окажется, что нет такой строки, то переходим к следующему столбцу и т.д.

После прямого хода исключения Гаусса получим матрицу, элементы которой под главной диагональю равны нулю. Кроме этого могут оказаться нулевые векторы строки.

Количество ненулевых векторов строк и будет рангом матрицы A .

Рассмотрим все это на простых примерах.

Пример 1.

Умножив первую строку на 4 и прибавив ко второй строке и умножив первую строку на 2 и прибавив к третьей строке имеем:

Вторую строку умножим на -1 и прибавим к третьей строке:

Получили две ненулевые строки и, следовательно ранг матрицы равен 2.

Пример 2.

Найдем ранг следующей матрицы:

Умножим первую строку на -2 и прибавим ко второй строке. Аналогично обнулим элементы третьей и четвертой строки первого столбца:

Обнулим элементы третьей и четвертой строк второго столбца прибавляя соответствующие строки ко второй строке умноженной на число -1.

В каждой матрице можно связать два ранга: строчный ранг (ранг системы строк) и столбцовый ранг (ранг системы столбцов).

Теорема

Строчный ранг матрицы равен её столбцовому рангу.

Ранг матрицы

Определение

Рангом матрицы $A$ называется ранг её системы строк или столбцов.

Обозначается $\operatorname{rang} A$

На практике для нахождения ранга матрицы используют следующее утверждение: ранг матрицы равен количеству ненулевых строк после приведения матрицы к ступенчатому виду.

Элементарные преобразования над строками (столбцами) матрицы не меняют её ранга.

Ранг ступенчатой матрицы равен количеству её ненулевых строк.

Пример

Задание. Найти ранг матрицы $ A=\left(\begin{array}{cccc}{0} & {4} & {10} & {1} \\ {4} & {8} & {18} & {7} \\ {10} & {18} & {40} & {17} \\ {1} & {7} & {17} & {3}\end{array}\right) $

Решение. С помощью элементарных преобразований над ее строками приведем матрицу $A$ к ступенчатому виду. Для этого вначале от третьей строки отнимем две вторых:

$$ A \sim \left(\begin{array}{cccc}{0} & {4} & {10} & {1} \\ {4} & {8} & {18} & {7} \\ {2} & {2} & {4} & {3} \\ {1} & {7} & {17} & {3}\end{array}\right) $$

От второй строки отнимаем четвертую строку, умноженную на 4; от третьей - две четвертых:

$$ A \sim \left(\begin{array}{rrrr}{0} & {4} & {10} & {1} \\ {0} & {-20} & {-50} & {-5} \\ {0} & {-12} & {-30} & {-3} \\ {1} & {7} & {17} & {3}\end{array}\right) $$

Ко второй строке прибавим пять первых, к третьей - три третьих:

$$ A \sim \left(\begin{array}{cccc}{0} & {4} & {10} & {1} \\ {0} & {0} & {0} & {0} \\ {0} & {0} & {0} & {0} \\ {1} & {7} & {17} & {3}\end{array}\right) $$

Меняем местами первую и вторую строчки:

$$ A \sim \left(\begin{array}{cccc}{0} & {0} & {0} & {0} \\ {0} & {4} & {10} & {1} \\ {0} & {0} & {0} & {0} \\ {1} & {7} & {17} & {3}\end{array}\right) $$

$$ A \sim \left(\begin{array}{cccc}{1} & {7} & {17} & {3} \\ {0} & {4} & {10} & {1} \\ {0} & {0} & {0} & {0} \\ {0} & {0} & {0} & {0}\end{array}\right) \Rightarrow \operatorname{rang} A=2 $$

Ответ. $ \operatorname{rang} A=2 $

Метод окаймления миноров

На этой теореме базируется еще один метод нахождения ранга матрицы - метод окаймления миноров . Суть этого метода заключается в нахождении миноров, начиная с низших порядков и двигаясь к более высоким. Если минор $n$-го порядка не равен нулю, а все миноры $n+1$-го равны нулю, то ранг матрицы будет равен $n$ .

Пример

Задание. Найти ранг матрицы $ A=\left(\begin{array}{rrrr}{1} & {2} & {-1} & {-2} \\ {2} & {4} & {3} & {0} \\ {-1} & {-2} & {6} & {6}\end{array}\right) $ , используя метод окаймления миноров.

Решение. Минорами минимального порядка являются миноры первого порядка, которые равны элементам матрицы $A$ . Рассмотрим, например, минор $ M_{1}=1 \neq 0 $ . расположенный в первой строке и первом столбце. Окаймляем его с помощью второй строки и второго столбца, получаем минор $ M_{2}^{1}=\left| \begin{array}{ll}{1} & {2} \\ {2} & {4}\end{array}\right|=0 $ ; рассмотрим еще один минор второго порядка, для этого минор $M_1$ окаймляем при помощи второй строки и третьего столбца, тогда имеем минор $ M_{2}^{2}=\left| \begin{array}{rr}{1} & {-1} \\ {2} & {3}\end{array}\right|=5 \neq 0 $ , то есть ранг матрицы не меньше двух. Далее рассматриваем миноры третьего порядка, которые окаймляют минор $ M_{2}^{2} $ . Таких миноров два: комбинация третьей строки со вторым столбцом или с четвертым столбцом. Вычисляем эти миноры.

Элементарными называются следующие преобразования матрицы:

1) перестановка двух любых строк (или столбцов),

2) умножение строки (или столбца) на отличное от нуля число,

3) прибавление к одной строке (или столбцу) другой строки (или столбца), умноженной на некоторое число.

Две матрицы называются эквивалентными , если одна из них получается из другой с помощью конечного множества элементарных преобразований.

Эквивалентные матрицы не являются, вообще говоря, равными, но их ранги равны. Если матрицы А и В эквивалентны, то это записывается так: A ~ B.

Канонической матрицей называется матрица, у которой в начале главной диагонали стоят подряд несколько единиц (число которых может равняться нулю), а все остальные элементы равны нулю, например,

При помощи элементарных преобразований строк и столбцов любую матрицу можно привести к канонической. Ранг канонической матрицы равен числу единиц на ее главной диагонали.

Пример 2 Найти ранг матрицы

А=

и привести ее к каноническому виду.

Решение. Из второй строки вычтем первую и переставим эти строки:

.

Теперь из второй и третьей строк вычтем первую, умноженную соответственно на 2 и 5:

;

из третьей строки вычтем первую; получим матрицу

В = ,

которая эквивалентна матрице А, так как получена из нее с помощью конечного множества элементарных преобразований. Очевидно, что ранг матрицы В равен 2, а следовательно, и r(A)=2. Матрицу В легко привести к канонической. Вычитая первый столбец, умноженный на подходящие числа, из всех последующих, обратим в нуль все элементы первой строки, кроме первого, причем элементы остальных строк не изменяются. Затем, вычитая второй столбец, умноженный на подходящие числа, из всех последующих, обратим в нуль все элементы второй строки, кроме второго, и получим каноническую матрицу:

.

Теоре́ма Кро́некера - Капе́лли - критерий совместности системы линейных алгебраических уравнений:

Для того чтобы линейная система являлась совместной, необходимо и достаточно, что бы ранг расширенной матрицы этой системы был равен рангу ее основной матрицы.

Доказательство (условия совместности системы)

Необходимость

Пусть система совместна. Тогда существуют числа такие, что . Следовательно, столбец является линейной комбинацией столбцов матрицы . Из того, что ранг матрицы не изменится, если из системы его строк (столбцов) вычеркнуть или приписать строку (столбец), которая является линейной комбинацией других строк (столбцов) следует, что .

Достаточность

Пусть . Возьмем в матрице какой-нибудь базисный минор. Так как , то он же и будет базисным минором и матрицы . Тогда, согласно теореме о базисном миноре , последний столбец матрицы будет линейной комбинацией базисных столбцов, то есть столбцов матрицы . Следовательно, столбец свободных членов системы является линейной комбинацией столбцов матрицы .

Следствия

    Количество главных переменных системы равно рангу системы.

    Совместная система будет определена (её решение единственно), если ранг системы равен числу всех её переменных.

Однородная система уравнений

Предложение 15 . 2 Однородная система уравнений

всегда является совместной.

Доказательство . Для этой системы набор чисел , , , является решением.

В этом разделе мы будем использовать матричную запись системы: .

Предложение 15 . 3 Сумма решений однородной системы линейных уравнений является решением этой системы. Решение, умноженное на число, тоже является решением.

Доказательство . Пусть и служат решениями системы . Тогда и . Пусть . Тогда

Так как , то -- решение.

Пусть -- произвольное число, . Тогда

Так как , то -- решение.

Следствие 15 . 1 Если однородная система линейных уравнений имеет ненулевое решение, то она имеет бесконечно много различных решений.

Действительно, умножая ненулевое решение на различные числа, будем получать различные решения.

Определение 15 . 5 Будем говорить, что решения системы образуют фундаментальную систему решений , если столбцы образуют линейно независимую систему и любое решение системы является линейной комбинацией этих столбцов.

Определение 15 . 6 Пусть -- фундаментальная система решений однородной системы . Тогда выражение

где -- произвольные числа, будем называть общим решением системы .

Из определения фундаментальной системы решений следует, что любое решение однородной системы может быть получено из общего решения при некоторых значениях . И наоборот, при любых фиксированных числовых значениях из общего решения получим решение однородной системы.

Как находить фундаментальную систему решений мы увидим позже, в разделе "Алгоритм нахождения решений произвольной системы линейных уравнений (метод Гаусса)" .

Теорема 15 . 3 Пусть -- фундаментальная система решений однородной системы . Тогда , где -- число неизвестных в системе.

Теорема (о линейном решении однородных систем). Пусть - решения однородной системы (1), - произвольные константы. Тогда также является решением рассматриваемой системы.

Строк (столбцов). Несколько строк (столбцов) называются линейно независимыми, если ни одна из них не выражается линейно через другие. Ранг системы строк всегда равен рангу системы столбцов, и это число называется рангом матрицы.

Ранг матрицы - наивысший из порядков всевозможных ненулевых миноров этой матрицы. Ранг нулевой матрицы любого размера ноль. Если все миноры второго порядка равны нулю, то ранг равен единице, и т.д.

Ранг матрицы - размерность образа dim ⁡ (im ⁡ (A)) {\displaystyle \dim(\operatorname {im} (A))} линейного оператора , которому соответствует матрица.

Обычно ранг матрицы A {\displaystyle A} обозначается rang ⁡ A {\displaystyle \operatorname {rang} A} , r ⁡ A {\displaystyle \operatorname {r} A} , rg ⁡ A {\displaystyle \operatorname {rg} A} или rank ⁡ A {\displaystyle \operatorname {rank} A} . Последний вариант свойственен для английского языка, в то время как первые два - для немецкого, французского и ряда других языков.

Энциклопедичный YouTube

  • 1 / 5

    Пусть - прямоугольная матрица.

    Тогда по определению рангом матрицы A {\displaystyle A} является:

    Теорема (о корректности определения рангов). Пусть все миноры матрицы A m × n {\displaystyle A_{m\times n}} порядка k {\displaystyle k} равны нулю ( M k = 0 {\displaystyle M_{k}=0} ). Тогда ∀ M k + 1 = 0 {\displaystyle \forall M_{k+1}=0} , если они существуют.

    Связанные определения

    Свойства

    • Теорема (о базисном миноре): Пусть r = rang ⁡ A , M r {\displaystyle r=\operatorname {rang} A,M_{r}} - базисный минор матрицы A {\displaystyle A} , тогда:
    • Следствия:
    • Теорема (об инвариантности ранга при элементарных преобразованиях): Введём обозначение для матриц, полученных друг из друга элементарными преобразованиями . Тогда справедливо утверждение: Если A ∼ B {\displaystyle A\sim B} , то их ранги равны.
    • Теорема Кронекера - Капелли : Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг её основной матрицы равен рангу её расширенной матрицы. В частности:
      • Количество главных переменных системы равно рангу системы.
      • Совместная система будет определена (её решение единственно), если ранг системы равен числу всех её переменных.
    • Неравенство Сильвестра : Если A и B матрицы размеров m x n и n x k , то
    rang ⁡ A B ≥ rang ⁡ A + rang ⁡ B − n {\displaystyle \operatorname {rang} AB\geq \operatorname {rang} A+\operatorname {rang} B-n}

    Это частный случай следующего неравенства.

    • Неравенство Фробениуса : Если AB, BC, ABC корректно определены, то
    rang ⁡ A B C ≥ rang ⁡ A B + rang ⁡ B C − rang ⁡ B {\displaystyle \operatorname {rang} ABC\geq \operatorname {rang} AB+\operatorname {rang} BC-\operatorname {rang} B}

    Линейное преобразование и ранг матрицы

    Пусть A {\displaystyle A} - матрица размера m × n {\displaystyle m\times n} над полем C {\displaystyle C} (или R {\displaystyle R} ). Пусть T {\displaystyle T} - линейное преобразование, соответствующее A {\displaystyle A} в стандартном базисе; это значит, что T (x) = A x {\displaystyle T(x)=Ax} . Ранг матрицы A {\displaystyle A} - это размерность области значений преобразования T {\displaystyle T} .

    Методы

    Существует несколько методов нахождения ранга матрицы:

    • Метод элементарных преобразований
    Ранг матрицы равен числу ненулевых строк в матрице после приведения её к ступенчатой форме при помощи элементарных преобразований над строками матрицы.
    • Метод окаймляющих миноров
    Пусть в матрице A {\displaystyle A} найден ненулевой минор k {\displaystyle k} -го порядка M {\displaystyle M} . Рассмотрим все миноры (k + 1) {\displaystyle (k+1)} -го порядка, включающие в себя (окаймляющие) минор M {\displaystyle M} ; если все они равны нулю, то ранг матрицы равен k {\displaystyle k} . В противном случае среди окаймляющих миноров найдется ненулевой, и вся процедура повторяется.

    Пусть задана некоторая матрица :

    .

    Выделим в этой матрице произвольных строк ипроизвольных столбцов
    . Тогда определитель-го порядка, составленный из элементов матрицы
    , расположенных на пересечении выделенных строк и столбцов, называется минором-го порядка матрицы
    .

    Определение 1.13. Рангом матрицы
    называется наибольший порядок минора этой матрицы, отличного от нуля.

    Для вычисления ранга матрицы следует рассматривать все ее миноры наименьшего порядка и, если хоть один из них отличный от нуля, переходить к рассмотрению миноров старшего порядка. Такой подход к определению ранга матрицы называется методом окаймления (или методом окаймляющих миноров).

    Задача 1.4. Методом окаймляющих миноров определить ранг матрицы
    .

    .

    Рассмотрим окаймление первого порядка, например,
    . Затем перейдем к рассмотрению некоторого окаймления второго порядка.

    Например,
    .

    Наконец, проанализируем окаймление третьего порядка.

    .

    Таким образом, наивысший порядок минора, отличного от нуля, равен 2, следовательно,
    .

    При решении задачи 1.4 можно заметить, что ряд окаймляющих миноров второго порядка отличны от нуля. В этой связи имеет место следующее понятие.

    Определение 1.14. Базисным минором матрицы называется всякий, отличный от нуля минор, порядок которого равен рангу матрицы.

    Теорема 1.2. (Теорема о базисном миноре). Базисные строки (базисные столбцы) линейно независимы.

    Заметим, что строки (столбцы) матрицы линейно зависимы тогда и только тогда, когда хотя бы одну из них можно представить как линейную комбинацию остальных.

    Теорема 1.3. Число линейно независимых строк матрицы равно числу линейно независимых столбцов матрицы и равно рангу матрицы.

    Теорема 1.4. (Необходимое и достаточное условие равенства нулю определителя). Для того, чтобы определитель-го порядкабыл равен нулю, необходимо и достаточно, чтобы его строки (столбцы) были линейно зависимы.

    Вычисление ранга матрицы, основанное на использовании его определения, является слишком громоздкой операцией. Особенно это становится существенным для матриц высоких порядков. В этой связи на практике ранг матрицы вычисляют на основании применения теорем 10.2 - 10.4, а также использования понятий эквивалентности матриц и элементарных преобразований.

    Определение 1.15. Две матрицы
    иназываются эквивалентными, если их ранги равны, т.е.
    .

    Если матрицы
    иэквивалентны, то отмечают
    .

    Теорема 1.5. Ранг матрицы не меняется от элементарных преобразований.

    Будем называть элементарными преобразованиями матрицы
    любые из следующих действий над матрицей:

    Замену строк столбцами, а столбцов соответствующими строками;

    Перестановку строк матрицы;

    Вычеркивание строки, все элементы которой равны нулю;

    Умножение какой-либо строки на число, отличное от нуля;

    Прибавление к элементам одной строки соответствующих элементов другой строки умноженных на одно и то же число
    .

    Следствие теоремы 1.5. Если матрица
    получена из матрицыпри помощи конечного числа элементарных преобразований, то матрицы
    иэквивалентны.

    При вычислении ранга матрицы ее следует привести при помощи конечного числа элементарных преобразований к трапециевидной форме.

    Определение 1.16. Трапециевидной будем называть такую форму представления матрицы, когда в окаймляющем миноре наибольшего порядка отличного от нуля все элементы, стоящие ниже диагональных, обращаются в нуль. Например:

    .

    Здесь
    , элементы матрицы
    обращаются в нуль. Тогда форма представления такой матрицы будет трапециевидной.

    Как правило, матрицы к трапециевидной форме приводят при помощи алгоритма Гаусса. Идея алгоритма Гаусса состоит в том, что, умножая элементы первой строки матрицы на соответствующие множители, добиваются, чтобы все элементы первого столбца, расположенные ниже элемента
    , превращались бы в нуль. Затем, умножая элементы второго столбца на соответствующие множители, добиваются, чтобы все элементы второго столбца, расположенные ниже элемента
    , превращались бы в нуль. Далее поступают аналогично.

    Задача 1.5. Определить ранг матрицы путем сведения ее к трапециевидной форме.

    .

    Для удобства применения алгоритма Гаусса можно поменять местами первую и третью строки.






    .

    Очевидно, что здесь
    . Однако, для приведения результата к более изящному виду можно далее продолжить преобразования над столбцами.








    .



Просмотров