Схемы включения биполярного транзистора. Схемы включения транзистора

Являются биполярные транзисторы. Схемы включения зависят от того, какая у них проводимость (дырочная или электронная) и выполняемые функции.

Классификация

Транзисторы разделяют на группы:

  1. По материалам: чаще всего используются арсенид галлия и кремний.
  2. По частоте сигнала: низкая (до 3 МГц), средняя (до 30 МГц), высокая (до 300 МГц), сверхвысокая (выше 300 МГц).
  3. По максимальной мощности рассеивания: до 0,3 Вт, до 3 Вт, более 3 Вт.
  4. По типу устройства: три соединенных слоя полупроводника с поочередным изменением прямого и обратного способов примесной проводимости.

Как работают транзисторы?

Наружные и внутренний слои транзистора соединены с подводящими электродами, называемыми соответственно эмиттером, коллектором и базой.

Эмиттер и коллектор не отличаются друг от друга типами проводимости, но степень легирования примесями у последнего значительно ниже. За счет этого обеспечивается увеличение допустимого выходного напряжения.

База, являющаяся средним слоем, обладает большим сопротивлением, поскольку сделана из полупроводника со слабым легированием. Она имеет значительную площадь контакта с коллектором, что улучшает отвод тепла, выделяющегося из-за обратного смещения перехода, а также облегчает прохождение неосновных носителей - электронов. Несмотря на то что переходные слои основаны на одном принципе, транзистор является несимметричным устройством. При перемене мест крайних слоев с одинаковой проводимостью невозможно получить аналогичные параметры полупроводникового устройства.

Схемы включения способны поддерживать его в двух состояниях: он может быть открытым или закрытым. В активном режиме, когда транзистор открыт, эмиттерное смещение перехода сделано в прямом направлении. Чтобы наглядно это рассмотреть, например, на полупроводниковом триоде типа n-p-n, на него следует подать напряжение от источников, как изображено на рисунке ниже.

Граница на втором коллекторном переходе при этом закрыта, и через нее ток протекать не должен. Но на практике происходит обратное из-за близкого расположения переходов друг к другу и их взаимного влияния. Поскольку к эмиттеру подключен «минус» батареи, открытый переход позволяет электронам поступать в зону базы, где происходит их частичная рекомбинация с дырками - основными носителями. Образуется базовый ток I б. Чем он сильней, тем пропорционально больше ток на выходе. На этом принципе работают усилители на биполярных транзисторах.

Через базу происходит исключительно диффузионное перемещение электронов, поскольку там нет действия электрического поля. Благодаря незначительной толщине слоя (микроны) и большой величине отрицательно заряженных частиц, почти все из них попадают в область коллектора, хотя сопротивление базы достаточно велико. Там их втягивает электрическое поле перехода, способствующее их активному переносу. Коллекторный и эмиттерный токи практически равны между собой, если пренебречь незначительной потерей зарядов, вызванных рекомбинацией в базе: I э = I б + I к.

Параметры транзисторов

  1. Коэффициенты усиления по напряжению U эк /U бэ и току: β = I к /I б (фактические значения). Обычно коэффициент β не превышает значения 300, но может достигать величины 800 и выше.
  2. Входное сопротивление.
  3. Частотная характеристика - работоспособность транзистора до заданной частоты, при превышении которой переходные процессы в нем не успевают за изменениями подаваемого сигнала.

Биполярный транзистор: схемы включения, режимы работы

Режимы работы отличаются в зависимости от того, как собрана схема. Сигнал должен подаваться и сниматься в двух точках для каждого случая, а в наличии имеются только три вывода. Отсюда следует, что один электрод должен одновременно принадлежать входу и выходу. Так включаются любые биполярные транзисторы. Схемы включения: ОБ, ОЭ и ОК.

1. Схема с ОК

Схема включения с общим коллектором: сигнал поступает на резистор R L , который входит также в коллекторную цепь. Такое подключение называют схемой с общим коллектором.

Этот вариант создает только усиление по току. Преимущество эмиттерного повторителя состоит в создании большого сопротивления входа (10-500 кОм), что позволяет удобно согласовывать каскады.

2. Схема с ОБ

Схема включения биполярного транзистора с общей базой: входящий сигнал поступает через С 1 , а после усиления снимается в выходной коллекторной цепи, где электрод базы является общим. В таком случае создается усиление по напряжению аналогично работе с ОЭ.

Недостатком является небольшое сопротивление входа (30-100 Ом), и схема с ОБ применяется как генератор колебаний.

3. Схема с ОЭ

Во многих вариантах, когда применяются биполярные транзисторы, схемы включения преимущественно делаются с общим эмиттером. Питающее напряжение подается через нагрузочный резистор R L , а к эмиттеру подключается отрицательный полюс внешнего питания.

Переменный сигнал со входа поступает на электроды эмиттера и базы (V in), а в коллекторной цепи он становится уже больше по величине (V CE). Основные элементы схемы: транзистор, резистор R L и цепь выхода усилителя с внешним питанием. Вспомогательные: конденсатор С 1 , препятствующий прохождению постоянного тока в цепь подаваемого входного сигнала, и резистор R 1 , через который транзистор открывается.

В коллекторной цепи напряжения на выходе транзистора и на резисторе R L вместе равны величине ЭДС: V CC = I C R L + V CE .

Таким образом, небольшим сигналом V in на входе задается закон изменения постоянного напряжения питания в переменное на выходе управляемого транзисторного преобразователя. Схема обеспечивает возрастание входного тока в 20-100 раз, а напряжения - в 10-200 раз. Соответственно, мощность также повышается.

Недостаток схемы: небольшое сопротивление входа (500-1000 Ом). По этой причине появляются проблемы в формировании Выходное сопротивление составляет 2-20 кОм.

Приведенные схемы демонстрируют, как работает биполярный транзистор. Если не принять дополнительных мер, на их работоспособность будут сильно влиять внешние воздействия, например перегрев и частота сигнала. Также заземление эмиттера создает нелинейные искажения на выходе. Чтобы повысить надежность работы, в схеме подключают обратные связи, фильтры и т. п. При этом коэффициент усиления снижается, но устройство становится более работоспособным.

Режимы работы

На функции транзистора влияет значение подключаемого напряжения. Все режимы работы можно показать, если применяется представленная ранее схема включения биполярного транзистора с общим эмиттером.

1. Режим отсечки

Данный режим создается, когда значение напряжения V БЭ снижается до 0,7 В. При этом эмиттерный переход закрывается, и коллекторный ток отсутствует, поскольку нет свободных электронов в базе. Таким образом, транзистор заперт.

2. Активный режим

Если на базу подать напряжение, достаточное, чтобы открыть транзистор, появляется небольшой входной ток и повышенный на выходе, в зависимости от величины коэффициента усиления. Тогда транзистор будет работать как усилитель.

3. Режим насыщения

Режим отличается от активного тем, что транзистор полностью открывается, и ток коллектора достигает максимально возможного значения. Его увеличения можно достигнуть только за счет изменения прикладываемой ЭДС или нагрузки в цепи выхода. При изменении базового тока коллекторный не меняется. Режим насыщения характеризуется тем, что транзистор предельно открыт, и здесь он служит переключателем во включенном состоянии. Схемы включения биполярных транзисторов при объединении режимов отсечки и насыщения позволяют создавать с их помощью электронные ключи.

Все режимы работы зависят от характера выходных характеристик, изображенных на графике.

Их можно наглядно продемонстрировать, если будет собрана схема включения биполярного транзистора с ОЭ.

Если отложить на осях ординат и абсцисс отрезки, соответствующие максимально возможному коллекторному току и величине напряжения питания V CC , а затем соединить их концы между собой, получится линия нагрузки (красного цвета). Она описывается выражением: I C = (V CC - V CE)/R C . Из рисунка следует, что рабочая точка, определяющая ток коллектора I C и напряжение V CE , будет смещаться по нагрузочной линии снизу вверх при увеличении тока базы I В.

Зона между осью V CE и первой характеристикой выхода (заштрихована), где I В = 0, характеризует режим отсечки. При этом обратный ток I C ничтожно мал, а транзистор закрыт.

Самая верхняя характеристика в точке А пересекается с прямой нагрузки, после которой при дальнейшем увеличении I В коллекторный ток уже не изменяется. Зоной насыщения на графике является заштрихованная область между осью I C и самой крутой характеристикой.

Как ведет себя транзистор в разных режимах?

Транзистор работает с переменными или постоянными сигналами, поступающими во входную цепь.

Биполярный транзистор: схемы включения, усилитель

Большей частью транзистор служит в качестве усилителя. Переменный сигнал на входе приводит к изменению его выходного тока. Здесь можно применить схемы с ОК или с ОЭ. В выходной цепи для сигнала требуется нагрузка. Обычно используют резистор, установленный в выходной коллекторной цепи. Если его правильно выбрать, величина выходного напряжения будет значительно выше, чем входного.

Работу усилителя хорошо видно на временных диаграммах.

Когда преобразуются импульсные сигналы, режим остается тем же, что и для синусоидальных. Качество преобразования их гармонических составляющих определяется частотными характеристиками транзисторов.

Работа в режиме переключения

Предназначены для бесконтактной коммутации соединений в электрических цепях. Принцип заключается в ступенчатом изменении сопротивления транзистора. Биполярный тип вполне подходит под требования ключевого устройства.

Заключение

Полупроводниковые элементы используются в схемах преобразования электрических сигналов. Универсальные возможности и большая классификация позволяют широко применять биполярные транзисторы. Схемы включения определяют их функции и режимы работы. Многое также зависит от характеристик.

Основные схемы включения биполярных транзисторов усиливают, генерируют и преобразуют входные сигналы, а также переключают электрические цепи.

Необходимые пояснения даны, переходим к сути.

Транзисторы. Определение и история

Транзистор - электронный полупроводниковый прибор, в котором ток в цепи двух электродов управляется третьим электродом. (tranzistors.ru)

Первыми были изобретены полевые транзисторы (1928 год), а биполярные появилсь в 1947 году в лаборатории Bell Labs. И это была, без преувеличения, революция в электронике.

Очень быстро транзисторы заменили вакуумные лампы в различных электронных устройствах. В связи с этим возросла надежность таких устройств и намного уменьшились их размеры. И по сей день, насколько бы «навороченной» не была микросхема, она все равно содержит в себе множество транзисторов (а также диодов, конденсаторов, резисторов и проч.). Только очень маленьких.

Кстати, изначально «транзисторами» называли резисторы, сопротивление которых можно было изменять с помощью величины подаваемого напряжения. Если отвлечься от физики процессов, то современный транзистор тоже можно представить как сопротивление, зависящее от подаваемого на него сигнала.

В чем же отличие между полевыми и биполярными транзисторами? Ответ заложен в самих их названиях. В биполярном транзисторе в переносе заряда участвуют и электроны, и дырки («бис» - дважды). А в полевом (он же униполярный) - или электроны, или дырки.

Также эти типы транзисторов разнятся по областям применения. Биполярные используются в основном в аналоговой технике, а полевые - в цифровой.

И, напоследок: основная область применения любых транзисторов - усиление слабого сигнала за счет дополнительного источника питания.

Биполярный транзистор. Принцип работы. Основные характеристики


Биполярный транзистор состоит из трех областей: эмиттера, базы и коллектора, на каждую из которых подается напряжение. В зависимости от типа проводимости этих областей, выделяют n-p-n и p-n-p транзисторы. Обычно область коллектора шире, чем эмиттера. Базу изготавливают из слаболегированного полупроводника (из-за чего она имеет большое сопротивление) и делают очень тонкой. Поскольку площадь контакта эмиттер-база получается значительно меньше площади контакта база-коллектор, то поменять эмиттер и коллектор местами с помощью смены полярности подключения нельзя. Таким образом, транзистор относится к несимметричным устройствам.

Прежде, чем рассматривать физику работы транзистора, обрисуем общую задачу.


Она заключаются в следующем: между эмиттером и коллектором течет сильный ток (ток коллектора ), а между эмиттером и базой - слабый управляющий ток (ток базы ). Ток коллектора будет меняться в зависимости от изменения тока базы. Почему?
Рассмотрим p-n переходы транзистора. Их два: эмиттер-база (ЭБ) и база-коллектор (БК). В активном режиме работы транзистора первый из них подключается с прямым, а второй - с обратным смещениями. Что же при этом происходит на p-n переходах? Для большей определенности будем рассматривать n-p-n транзистор. Для p-n-p все аналогично, только слово «электроны» нужно заменить на «дырки».

Поскольку переход ЭБ открыт, то электроны легко «перебегают» в базу. Там они частично рекомбинируют с дырками, но бо льшая их часть из-за малой толщины базы и ее слабой легированности успевает добежать до перехода база-коллектор. Который, как мы помним, включен с обратным смещением. А поскольку в базе электроны - неосновные носители заряда, то электирическое поле перехода помогает им преодолеть его. Таким образом, ток коллетора получается лишь немного меньше тока эмиттера. А теперь следите за руками. Если увеличить ток базы, то переход ЭБ откроется сильнее, и между эмиттером и коллектором сможет проскочить больше электронов. А поскольку ток коллектора изначально больше тока базы, то это изменение будет весьма и весьма заметно. Таким образом, произойдет усиление слабого сигнала, поступившего на базу . Еще раз: сильное изменение тока коллектора является пропорциональным отражением слабого изменения тока базы.

Помню, моей одногрупнице принцип работы биполярного транзистора объясняли на примере водопроводного крана. Вода в нем - ток коллектора, а управляющий ток базы - то, насколько мы поворачиваем ручку. Достаточно небольшого усилия (управляющего воздействия), чтобы поток воды из крана увеличился.

Помимо рассмотренных процессов, на p-n переходах транзистора может происходить еще ряд явлений. Например, при сильном увеличении напряжения на переходе база-коллектор может начаться лавинное размножение заряда из-за ударной ионизации. А вкупе с туннельным эффектом это даст сначала электрический, а затем (с возрастанием тока) и тепловой пробой. Однако, тепловой пробой в транзисторе может наступить и без электрического (т.е. без повышения коллекторного напряжения до пробивного). Для этого будет достаточно одного чрезмерного тока через коллектор.

Еще одно явления связано с тем, что при изменении напряжений на коллекторном и эмиттерном переходах меняется их толщина. И если база черезчур тонкая, то может возникнуть эффект смыкания (так называемый «прокол» базы) - соединение коллекторного перехода с эмиттерным. При этом область базы исчезает, и транзистор перестает нормально работать.

Коллекторный ток транзистора в нормальном активном режиме работы транзистора больше тока базы в определенное число раз. Это число называется коэффициентом усиления по току и является одним из основных параметров транзистора. Обозначается оно h21 . Если транзистор включается без нагрузки на коллектор, то при постоянном напряжении коллектор-эмиттер отношение тока коллектора к току базы даст статический коэффициент усиления по току . Он может равняться десяткам или сотням единиц, но стоит учитывать тот факт, что в реальных схемах этот коэффициент меньше из-за того, что при включении нагрузки ток коллектора закономерно уменьшается.

Вторым немаловажным параметром является входное сопротивление транзистора . Согласно закону Ома, оно представляет собой отношение напряжения между базой и эмиттером к управляющему току базы. Чем оно больше, тем меньше ток базы и тем выше коэффициент усиления.

Третий параметр биполярного транзистора - коэффициент усиления по напряжению . Он равен отношению амплитудных или действующих значений выходного (эмиттер-коллектор) и входного (база-эмиттер) переменных напряжений. Поскольку первая величина обычно очень большая (единицы и десятки вольт), а вторая - очень маленькая (десятые доли вольт), то этот коэффициент может достигать десятков тысяч единиц. Стоит отметить, что каждый управляющий сигнал базы имеет свой коэффициент усиления по напряжению.

Также транзисторы имеют частотную характеристику , которая характеризует способность транзистора усиливать сигнал, частота которого приближается к граничной частоте усиления. Дело в том, что с увеличением частоты входного сигнала коэффициент усиления снижается. Это происходит из-за того, что время протекания основных физических процессов (время перемещения носителей от эмиттера к коллектору, заряд и разряд барьерных емкостных переходов) становится соизмеримым с периодом изменения входного сигнала. Т.е. транзистор просто не успевает реагировать на изменения входного сигнала и в какой-то момент просто перестает его усиливать. Частота, на которой это происходит, и называется граничной .

Также параметрами биполярного транзистора являются:

  • обратный ток коллектор-эмиттер
  • время включения
  • обратный ток колектора
  • максимально допустимый ток

Условные обозначения n-p-n и p-n-p транзисторов отличаются только направлением стрелочки, обозначающей эмиттер. Она показывает то, как течет ток в данном транзисторе.

Режимы работы биполярного транзистора

Рассмотренный выше вариант представляет собой нормальный активный режим работы транзистора. Однако, есть еще несколько комбинаций открытости/закрытости p-n переходов, каждая из которых представляет отдельный режим работы транзистора.
  1. Инверсный активный режим . Здесь открыт переход БК, а ЭБ наоборот закрыт. Усилительные свойства в этом режиме, естественно, хуже некуда, поэтому транзисторы в этом режиме используются очень редко.
  2. Режим насыщения . Оба перехода открыты. Соответственно, основные носители заряда коллектора и эмиттера «бегут» в базу, где активно рекомбинируют с ее основными носителями. Из-за возникающей избыточности носителей заряда сопротивление базы и p-n переходов уменьшается. Поэтому цепь, содержащую транзистор в режиме насыщения можно считать короткозамкнутой, а сам этот радиоэлемент представлять в виде эквипотенциальной точки.
  3. Режим отсечки . Оба перехода транзистора закрыты, т.е. ток основных носителей заряда между эмиттером и коллектором прекращается. Потоки неосновных носителей заряда создают только малые и неуправляемые тепловые токи переходов. Из-за бедности базы и переходов носителями зарядов, их сопротивление сильно возрастает. Поэтому часто считают, что транзистор, работающий в режиме отсечки, представляет собой разрыв цепи.
  4. Барьерный режим В этом режиме база напрямую или через малое сопротивление замкнута с коллектором. Также в коллекторную или эмиттерную цепь включают резистор, который задает ток через транзистор. Таким образом получается эквивалент схемы диода с последовательно включенным сопротивлением. Этот режим очень полезный, так как позволяет схеме работать практически на любой частоте, в большом диапазоне температур и нетребователен к параметрам транзисторов.

Схемы включения биполярных транзисторов

Поскольку контактов у транзистора три, то в общем случае питание на него нужно подавать от двух источников, у которых вместе получается четыре вывода. Поэтому на один из контактов транзистора приходится подавать напряжение одинакового знака от обоих источников. И в зависимости от того, что это за контакт, различают три схемы включения биполярных транзисторов: с общим эмиттером (ОЭ), общим коллектором (ОК) и общей базой (ОБ). У каждой из них есть как достоинства, так и недостатки. Выбор между ними делается в зависимости от того, какие параметры для нас важны, а какими можно поступиться.

Схема включения с общим эмиттером

Эта схема дает наибольшее усиление по напряжению и току (а отсюда и по мощности - до десятков тысяч единиц), в связи с чем является наиболее распространенной. Здесь переход эмиттер-база включается прямо, а переход база-коллектор - обратно. А поскольку и на базу, и на коллектор подается напряжение одного знака, то схему можно запитать от одного источника. В этой схеме фаза выходного переменного напряжения меняется относительно фазы входного переменного напряжения на 180 градусов.

Но ко всем плюшкам схема с ОЭ имеет и существенный недостаток. Он заключается в том, что рост частоты и температуры приводит к значительному ухудшению усилительных свойств транзистора. Таким образом, если транзистор должен работать на высоких частотах, то лучше использовать другую схему включения. Например, с общей базой.

Схема включения с общей базой

Эта схема не дает значительного усиления сигнала, зато хороша на высоких частотах, поскольку позволяет более полно использовать частотную характеристику транзистора. Если один и тот же транзистор включить сначала по схеме с общим эмиттером, а потом с общей базой, то во втором случае будет наблюдаться значительное увеличение его граничной частоты усиления. Поскольку при таком подключении входное сопротивление низкое, а выходное - не очень большое, то собранные по схеме с ОБ каскады транзисторов применяют в антенных усилителях, где волновое сопротивление кабелей обычно не превышает 100 Ом.

В схеме с общей базой не происходит инвертирование фазы сигнала, а уровень шумов на высоких частотах снижается. Но, как уже было сказано, коэффициент усиления по току у нее всегда немного меньше единицы. Правда, коэффициент усиления по напряжению здесь такой же, как и в схеме с общим эмиттером. К недостаткам схемы с общей базой можно также отнести необходимость использования двух источников питания.

Схема включения с общим коллектором

Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь.

Напомню, что отрицательной называют такую обратную связь, при которой выходной сигнал подается обратно на вход, чем снижает уровень входного сигнала. Таким образом происходит автоматическая корректировка при случайном изменении параметров входного сигнала

Коэффициент усиления по току почти такой же, как и в схеме с общим эмиттером. А вот коэффициент усиления по напряжению маленький (основной недостаток этой схемы). Он приближается к единице, но всегда меньше ее. Таким образом, коэффициент усиления по мощности получается равным всего нескольким десяткам единиц.

В схеме с общим коллектором фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным - потому, что выходное напряжение снимается с эмиттера относительно общего провода.

Такое включение используют для согласования транзисторных каскадов или когда источник входного сигнала имеет высокое входное сопротивление (например, пьезоэлектрический звукосниматель или конденсаторный микрофон).

Два слова о каскадах

Бывает такое, что нужно увеличить выходную мощность (т.е. увеличить коллекторный ток). В этом случае используют параллельное включение необходимого числа транзисторов.

Естественно, они должны быть примерно одинаковыми по характеристикам. Но необходимо помнить, что максимальный суммарный коллекторный ток не должен превышать 1,6-1,7 от предельного тока коллектора любого из транзисторов каскада.
Тем не менее (спасибо за замечание), в случае с биполярными транзисторами так делать не рекомендуется. Потому что два транзистора даже одного типономинала хоть немного, но отличаются друг от друга. Соответственно, при параллельном включении через них будут течь токи разной величины. Для выравнивания этих токов в эмиттерные цепи транзисторов ставят балансные резисторы. Величину их сопротивления рассчитывают так, чтобы падение напряжения на них в интервале рабочих токов было не менее 0,7 В. Понятно, что это приводит к значительному ухудшению КПД схемы.

Может также возникнуть необходимость в транзисторе с хорошей чувствительностью и при этом с хорошим коэффициентом усиления. В таких случаях используют каскад из чувствительного, но маломощного транзистора (на рисунке - VT1), который управляет энергией питания более мощного собрата (на рисунке - VT2).

Другие области применения биполярных транзисторов

Транзисторы можно применять не только схемах усиления сигнала. Например, благодаря тому, что они могут работать в режимах насыщения и отсечки, их используют в качестве электронных ключей. Также возможно использование транзисторов в схемах генераторов сигнала. Если они работают в ключевом режиме, то будет генерироваться прямоугольный сигнал, а если в режиме усиления - то сигнал произвольной формы, зависящий от управляющего воздействия.

Маркировка

Поскольку статья уже разрослась до неприлично большого объема, то в этом пункте я просто дам две хорошие ссылки, по которым подробно расписаны основные системы маркировки полупроводниковых приборов (в том числе и транзисторов): http://kazus.ru/guide/transistors/mark_all.html и файл.xls (35 кб) .

Полезные комментарии:
http://habrahabr.ru/blogs/easyelectronics/133136/#comment_4419173

Теги:

  • транзисторы
  • биполярные транзисторы
  • электроника
Добавить метки

Схема с общим эмиттером

Схема включения транзистора с общим эмиттером (ОЭ) изображена на рис. 5.1. Входным электродом является база (точнее, входной сигнал U в x приложен к переходу эмиттер – база, т. е. U в x = U БЭ = f Б – f Э, где f Б и f Э – соответственно, потенциалы базы и эмиттера). Выходным электродом является коллектор, т. е. выходное напряжение U вы x равно падению напряжения между коллектором и эмиттером U K Э: U вы x = U КЭ = f K – f Э, где f K – потенциал коллектора.

Рис. 5.1

Таким образом, эмиттер является «общим электродом» и для U в x , и для U вы x , чем и объясняется название схемы. Допустим, что эмиттер заземлен и f Э = 0. В большинстве случаев непосредственное соединение эмиттера с землей применяют редко, но здесь рассматривается именно схема с заземленным эмиттером, так как наличие дополнительных элементов R Э и C Э не изменяет основной принцип работы схемы с ОЭ, но сильно усложняет объяснение.

Емкости C p 1 и С p 2 будем считать в диапазоне частот сигнала короткими замыканиями, а для постоянных питающих напряжений они, естественно, представляют собой разрывы. Впоследствии вклад С p 1 и С p 2 в характеристики схемы и их назначение будут оговорены.

Для объяснения работы схемы используем известное из физики полупроводников явление: p n- переход при подаче на р -полупроводник положи-

тельного потенциала (относительно потенциала n -полупроводника) открывается и через переход течет ток; причем в определенных пределах ток прямо пропорционален разности потенциалов на переходе. К базе транзистора приложено постоянное положительное напряжение, определяемое значением напряжения источника питания Е и соотношением сопротивлений R Б 1 и R Б2 (R Б 1 и R Б2 называют базовым делителем), поэтому f Б всегда превышает f Э и переход эмиттер – база открыт.

Если теперь учесть, что на базу транзистора кроме постоянного положительного напряжения U в x = = E (R Б2 / (R Б1 + R Б2)) поступает также переменный сигнал U в x ≈ (для простоты примем, что U в x ≈ – гармонический сигнал), то в моменты, когда U в x ≈ имеет положительную полярность, p n -переход открывается еще больше и ток через него возрастает, а в моменты, когда U в x ≈ имеет отрицательную полярность (но сохраняется U в x = + U в x ≈ >0), переход частично закрывается и ток уменьшается. Ток через p n -переход эмиттер – база называют током эмиттера I Э. Внутри транзистора он разделяется на небольшой ток базы I Б << I Э и ток коллектора I К ≈ I Э. В свою очередь, ток коллектора I К течет через сопротивление R K и создает на нем напряжение DU R = I K R K . Отсюда очевидно, что потенциал коллектора f K = Е – DU R = Е I K R K зависит от того, насколько открыт переход эмиттер – база, т. е. от U в x .

Для аналитического описания зависимости I К от U БЭ часто используют параметр S = DI K /DU БЭ, который называется крутизной. Единицей измерения крутизны является ампер на вольт [А/В], ее название связано с очень редко встречающимися в справочниках «сквозными» вольт-амперными характеристиками транзисторов. Итак,

U вы x = f K – f Э = Е I K R K = Е S U БЭ R K = Е S R K (U в x = + U в x ≈) =

= Е S R K U в x = – S R K U в x ≈ .

Два первых слагаемых представляют собой постоянное напряжение U вых= , а переменный выходной сигнал равен U вы x ≈ = – S R K U в x ≈ .

Таким образом, в схеме с общим эмиттером при подаче переменного сигнала на базу транзистора обеспечивается формирование на коллекторе такого же переменного сигнала, отличающегося от входного амплитудой и знаком. При прохождении сигнала через схему имеет место сдвиг фазы, равный 180°). Коэффициент передачи схемы по напряжению

K U = | U вы x ≈ /U в x ≈ | = S R K .

Отметим, что использование такого параметра, как крутизна, удобно лишь для объяснения процессов в схеме. В справочниках величина S не приводится, зато обычно имеются входные и выходные вольт-амперные характеристики (зависимости I Б от U БЭ и I К от U КЭ соответственно).

Остановимся еще на некоторых моментах.

Во-первых, следует обсудить функциональное назначение емкостей C p 1 и С p 2 . Эти емкости представляют собой элементарные фильтры высоких частот, обеспечивающие развязку последовательно соединенных схем по постоянному сигналу. Допустим, что усилитель построен по двухкаскадной схеме, т. е. состоит из двух схем с общим эмиттером (выход первой схемы соединен со входом второй). В этом случае, очевидно, надо без потерь передать переменный сигнал с коллектора транзистора первой схемы на базу транзистора второй схемы. Проще всего это можно было бы сделать, соединив электроды двух транзисторов накоротко. Но ведь как напряжение на базе, так и напряжение на коллекторе содержат не только переменные, но и постоянные составляющие, причем разные:

f Б = = U в x = = E (R Б2 / (R Б1 + R Б2));

f K = = U вы x = = Е S R K U в x = .

Элементом, который пропускает переменный ток, но не пропускает постоянный, является емкость. Именно «разделительная» емкость С p , установленная между двумя каскадами, обеспечивает прохождение переменного сигнала и «развязку» каскадов по постоянному току.

В схеме рис. 5.1 эмиттер заземлен. Обычно это не так: схема с общим эмиттером содержит в цепи эмиттера сопротивление R Э и блокировочный конденсатор С Э. Назначение резистора – обеспечивать термостабилизацию параметров схемы. Дело в том, что при повышении температуры в полупроводниках возрастает подвижность носителей зарядов и их концентрация, в результате чего возрастает ток эмиттера, а значит и ток коллектора. Чтобы вернуть токи в исходное (до нагрева) состояние, надо частично закрыть переход эмиттер-база, а для этого увеличить f Э при неизменном f Б. Если эмиттер заземлен, то изменить f Э невозможно, а если имеется сопротивление R Э – задача решается очень легко: f Э = I Э R Э, поэтому с ростом I Э обеспечивается нужный эффект увеличения потенциала эмиттера. К сожалению, наличие R Э вызовет минимизацию изменений тока I Э не только на инфранизких частотах температурного дрейфа, но и на частотах сигнала, усиление схемы резко снизится. Поэтому необходимо зашунтировать R Э на частотах сигнала, применив для этой цели блокировочный конденсатор. На частотах температурного дрейфа С Э представляет собой большое сопротивление и не влияет на механизм термостабилизации; с возрастанием f превращается в короткое замыкание.

Теперь оговорим, какими параметрами обладает схема с ОЭ.

1. Коэффициент передачи (усиления) по напряжению K U = SR K обычно достигает единиц-десятков раз.

Рис. 5.2

2. Амплитудная характеристика (АХ) – зависимость U вы x ≈ от U в x ≈ (рис. 5.2). Линейный участок АХ имеет наклон α, связанный с коэффициентом передачи соотношением K U = tg α. При малых уровнях входного сигнала U вы x ≈ определяется уровнем шума U ш, при очень больших (U в x > > U лин m ax) – примерно равен уровню коллекторного питания.

3. Коэффициент передачи по току K I равен отношению выходного тока ко входному. Выходным электродом является коллектор, входным – база, поэтому К I = I K /I Б. Но I Б << I Э, а I К = I Э, отсюда K I >> 1.

4. Коэффициент передачи по мощности K P = K U K I , как следствие, весьма значителен.

5. Сдвиг фаз в схеме равен 180°.

6. Входное сопротивление R в x схемы определяется параллельным соединением сопротивлений R Б1 , R Б2 и эквивалентного сопротивления р n -перехода эмиттер – база: r БЭ = I Б /U БЭ.Обычно значения R Б1 и R Б2 , необходимые для работы схемы, а также r БЭ составляют килоомы – десятки килоом, поэтому и входное сопротивление равно килоомам.

7. Выходное сопротивление ненагруженной схемы R вы x определяется в первую очередь значением сопротивления R K (сотни ом – единицы килоом), а также эквивалентным сопротивлением транзистора r КЭ = I К /U КЭ (обычно порядок r КЭ – килоомы).

8. Амплитудно-частотная характеристика K U = K U (f ), где f – частота (рис. 5.3). АЧХ имеет на средних частотах равномерный участок, параллельный оси частот. На низких частотах, где емкости C p 1 и С p 2 еще не являются короткими замыканиями и часть сигнала падает на них, АЧХ имеет спад. Дополнительной причиной спада АЧХ на низких частотах является наличие R Э,

Низкочастотная коррекция (НЧК) осуществляется разделением коллекторного сопротивления (рис. 5.4) на два: R K 1 и R K 2 . Средняя точка делителя через емкость C ф соединяется с землей. На низких частотах C ф представляет собой большое сопротивление, и ее можно не учитывать при определении коэффициента усиления схемы, который определяется как K U = S (R K 1 + R K 2). На средних и высоких частотах C ф превращается в короткое замыкание и шунтирует R K 2 , поэтому коэффициент усиления снижается и равен K U = SR K 1 .

C ф выполняет также функцию фильтра, не допускающего переменный сигнал в источник питания (именно поэтому он помечен индексом «ф»).

Высокочастотная коррекция осуществляется двумя различными способами. Во-первых, последовательно с R K ставят индуктивность L (рис. 5.5) – такой способ называется индуктивной высокочастотной коррекцией (ИВЧК). В этом случае при любом значении индуктивности коэффициент усиления схемы возрастает с ростом частоты, так как

K U = S =

= S .

Рис. 5.5

Рис. 5.6

Второй способ высокочастотной коррекции – эмиттерная (ЭВЧК) не предусматривает введение в схему дополнительных элементов, а лишь существенное уменьшение значения емкости C Э. Независимо от своего значения эта емкость не шунтирует R Э на инфранизких частотах температурного дрейфа, поэтому механизм термостабилизации не нарушается. Но маленькая C Э (при малых значениях ее уже не принято называть блокировочной) не шунтирует R Э и на низких и средних частотах сигнала, при этом K U снижается.

Только на высоких частотах C Э закорачивает эмиттерное сопротивление и коэффициент усиления начинает возрастать – как раз тогда, когда в силу других причин он снижается. ЭВЧК из-за отсутствия индуктивности находит все более широкое применение, хотя обладает существенным недостатком – уменьшением K U усилителя на низких и средних частотах.

БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ


Биполярным транзистором называют полупроводниковый прибор, состоящий из трех областей с чередующимися типами электропроводности и предназначеный для усиления сигнала.

Биполярные транзисторы являются полупроводниковыми приборами универсального назначения и широко применяются в различных усилителях, генераторах, в импульсных и ключевых устройствах.

Биполярные транзисторы можно классифицировать по материалу: германиевые и кремниевые; по виду проводимости: типа р- n -р и n - p - n ; по мощности: малая (Р мах < 0,3Вт), средняя (Р мах = 1,5Вт) и большая (Р мах > 1,5Вт); по частоте: низкочастотные, среднечастотные, высокочастотные и СВЧ.

В таких транзисторах ток определяется движением носителей заряда двух типов: электронов и дырок. Отсюда пошло их название: биполярные.

Биполярный транзистор представляет собой пластинку германия или кремния, в которой созданы три области с различной электропроводностью. У транзистора типа n -р- n средняя область имеет дырочную, а крайние области – электронную электропроводность.

Транзисторы типа р- n -р имеют среднюю область с электронной, а крайние - с дырочной проводностью.

Средняя область транзистора называется базой, одна крайняя область – эмиттером, вторая – коллектором. Таким образом в транзисторе имеются два р- n - перехода: эмиттерный – между эмиттером и базой и коллекторный – между базой и коллектором.

Эмиттером - это область транзистора для инжекции носителей заряда в базу. Коллектором - область, назначением которой является извлечение носителей заряда из базы. Базой называется область, в которую инжектируются эмиттером неосновные для этой области носители заряда.

Концентрация основных носителей заряда в эмиттере во много раз больше концентрации основных носителей заряда в базе, а в коллекторе несколько меньше концентрации в эмиттере. Поэтому проводимость эмиттера гораздо выше проводимости базы, а проводимость коллектора меньше проводимости эмиттера.

В зависимости от того, какой из выводов является общим для входной и выходной цепей, различают три схемы включения транзистора: с общей базой (ОБ), общим эмиттером (ОЭ), общим коллектором (ОК).

Входная, или управляющая, цепь служит для управления работой транзистора. В выходной, или управляемой, цепи получаются усиленные колебания. Источник усиливаемых колебаний включается во входную цепь, а в выходную включается нагрузка.

Принцип действия транзистора на примере транзистора р- n -р –типа, включенного по схеме с общей базой (ОБ).

Внешние напряжения двух источников питания ЕЭ и Е к подключают к транзистору таким образом, чтобы обеспечивалось смещение эмиттерного перехода П1 в прямом направлении, а коллекторного перехода П2 – в обратном направлении.

Если к коллекторному переходу приложено обратное напряжение, а цепь эмиттера разомкнута, то в цепи коллектора протекает небольшой обратный ток I ко . Он возникает под действием обратного напряжения и создается направленным перемещением неосновных носителей заряда дырок базы и электронов коллектора через коллекторный переход. Обратный ток протекает по цепи: +Е к , база-коллектор, −Е к .

При включении в цепь эмиттера постоянного напряжения ЕЭ в прямом направлении потенциальный барьер эмиттерного перехода понижается. Начинается инжектирование дырок в базу.

Внешнее напряжение, приложенное к транзистору, оказывается приложенным в основном к переходам П1 и П2, т.к. они имеют большое сопротивление по сравнению с сопротивлением базовой, эмиттерной и коллекторной областей. Поэтому инжектированные в базу дырки перемещаются в ней посредством диффузии. При этом дырки рекомбинируют с электронами базы. Поскольку концентрация носителей в базе значительно меньше, чем в эмиттере, то рекомбинируют очень немногие дырки. При малой толщине базы почти все дырки будут доходить до коллекторного перехода П2. На место рекомбинированных электронов в базу поступают электроны от источника питания Е к . Дырки, рекомбинировавшие с электронами в базе, создают ток базы I Б.

Под воздействием обратного напряжения Е к, потенциальный барьер коллекторного перехода повышается, а толщина перехода П2 увеличивается. Вошедшие в область коллекторного перехода дырки попадают в ускоряющее поле, созданное на переходе коллекторным напряжением, и втягиваются коллектором, создавая коллекторный ток I к . Коллекторный ток протекает по цепи: +Е к , база-коллектор, -Е к .

Таким образом, в б иполярном транзисторе протекает три вида тока: эмиттера, коллектора и базы.

В проводе, являющемся выводом базы, токи эмиттера и коллектора направлены встречно. Ток базы равен разности токов эмиттера и коллектора: I Б = I Э − I К.

Физические процессы в транзисторе типа n -р- n протекают аналогично процессам в транзисторе типа р- n -р.

Полный ток эмиттера I Э определяется количеством инжектированных эмиттером основных носителей заряда. Основная часть этих носителей заряда достигая коллектора, создает коллекторный ток I к . Незначительная часть инжектированных в базу носителей заряда рекомбинируют в базе, создавая ток базы I Б. Следовательно, ток эмиттера разделятся на токи базы и коллектора, т.е. I Э = I Б + I к .

Выходной ток транзистора зависит от входного тока. Поэтому транзистор- прибор, управляемый током.

Изменения тока эмиттера, вызванные изменением напряжения эмиттерного перехода, полностью передаются в коллекторную цепь, вызывая изменение тока коллектора. А т.к. напряжение источника коллекторного питания Е к значительно больше, чем эмиттерного Е э , то и мощность, потребляемая в цепи коллектора Р к , будет значительно больше мощности в цепи эмиттера Р э . Таким образом, обеспечивается возможность управления большой мощностью в коллекторной цепи транзистора малой мощностью, затрачиваемой в эмиттерной цепи, т.е. имеет место усиление мощности.

Схемы включения биполярных транзисторов

Транзистор, в схему включают так, что один из его выводов является входным, второй – выходным, а третий – общим для входной и выходной цепей. В зависимости от того, какой электрод является общим, различают три схемы включения транзисторов: ОБ, ОЭ и ОК . Для транзистора n -р- n в схемах включения изменяются лишь полярности напряжений и направление токов. При любой схеме включения транзистора, полярность включения источников питания должна быть выбрана такой, чтоб эмиттерный переход был включен в прямом направлении, а коллекторный – в обратном.

Статические характеристики биполярных транзисторов

Статическим режимом работы транзистора называется режим при отсутствии нагрузки в выходной цепи.

Статическими характеристиками транзисторов называют графически выраженные зависимости напряжения и тока входной цепи (входные ВАХ) и выходной цепи (выходные ВАХ). Вид характеристик зависит от способа включения транзистора.

Характеристики транзистора, включенного по схеме ОБ

I Э = f (U ЭБ) при U КБ = const (а).

I К = f (U КБ) при I Э = const (б).

Статические характеристики биполярного транзистора, включенного по схеме ОБ. Выходные ВАХ имеют три характерные области: 1 – сильная зависимость I к от U КБ; 2 – слабая зависимость I к от U КБ; 3 – пробой коллекторного перехода. Особенностью характеристик в области 2 является их небольшой подъем при увеличении напряжения U КБ.

Характеристики транзистора, включенного по схеме ОЭ:

Входной характеристикой является зависимость:

I Б = f (U БЭ) при U КЭ = const (б).

Выходной характеристикой является зависимость:

I К = f (U КЭ) при I Б = const (а).


Режим работы биполярного транзистора

Транзистор может работать в трех режимах в зависимости от напряжения на его переходах. При работе в активном режиме на эмиттерном переходе напряжение прямое, а на коллекторном – обратное.

Режим отсечки, или запирания, достигается подачей обратного напряжения на оба перехода (оба р- n - перехода закрыты).

Если же на обоих переходах напряжение прямое (оба р- n - перехода открыты), то транзистор работает в режиме насыщения. В режиме отсечки и режиме насыщения управление транзистором почти отсутствует. В активном режиме такое управление осуществляется наиболее эффективно, причем транзистор может выполнять функции активного элемента электрической схемы - усиление, генерирация.

усилительный каскад на биполярном транзисторе

Наибольшее применение находит схема включения транзистора по схеме с общим эмиттером. Основными элементами схемы являются источник питания Е к , управляемый элемент – транзистор VT и резистор R к . Эти элементы образуют выходную цепь усилительного каскада, в которой за счет протекания управляемого тока создается усиленное переменное напряжение на выходе схемы. Другие элементы схемы выполняют вспомогательную роль. Конденсатор С р является разделительным. При отсутствии этого конденсатора в цепи источника входного сигнала создавался бы постоянный ток от источника питания Е к .

Резистор R Б, включенный в цепь базы, обеспечивает работу транзистора при отсутствии входного сигнала. Режим покоя обеспечивается током базы покоя I Б = Е к / R Б. С помощью резистора R к создается выходное напряжение. R к выполняет функцию создания изменяющегося напряжения в выходной цепи за счет протекания в ней тока, управляемого по цепи базы.

Для коллекторной цепи усилительного каскада можно записать следующее уравнение электрического состояния:

Е к = U кэ + I к R к ,

сумма падения напряжения на резисторе R к и напряжения коллектор-эмиттер U кэ транзистора всегда равна постоянной величине – ЭДС источника питания Е к .

Процесс усиления основывается на преобразовании энергии источника постоянного напряжения Е к в энергию переменного напряжения в выходной цепи за счет изменения сопротивления управляемого элемента (транзистора) по закону, задаваемого входным сигналом.

Схема включения биполярного транзистора с общим эмиттером приведена на рис. 6.13:

В транзисторе, включенном по схеме с общим эмиттером, имеет место усиление не только по напряжению, но и по току. Входными параметрами для схемы с общим эмиттером будут ток базы I Б , и напряжение на базе относительно эмиттера U БЭ, а выходными характеристиками будут ток коллектора I К и напряжение на коллекторе U КЭ . Для любых напряжений:

U КЭ = U КБ + U БЭ

Отличительной особенностью режима работы с ОЭ является одинаковая полярность напряжения смещения на входе (базе) и выходе (коллекторе): отрицательный потенциал в случае pnp -транзистора и положительный в случае npn -транзистора. При этом переход база-эмиттер смещается в прямом направлении, а переход база-коллектор – в обратном.

Ранее при анализе биполярного транзистора в схеме с общей базой была получена связь между током коллектора и током эмиттера в следующем виде:
. В схеме с общим эмиттером дляpnp -транзистора (в соответствии с первым законом Кирхгофа) (6.1):
, отсюда получим:

Коэффициент α/(1-α) называется коэффициентом усиления по току биполярного транзистора в схеме с общим эмиттером . Обозначим этот коэффициент знаком β , итак:

.

Коэффициент передачи тока для транзистора, включенного по схеме с общим эмиттером β показывает, во сколько раз изменяется ток коллектора I К при изменении тока базы I Б. Поскольку величина коэффициента передачи α близка к единице (α <1), то из уравнения (6.38) следует, что коэффициент усиления β будет существенно больше единицы (β >>1). При значениях коэффициента передачи α =0,98÷0,99 коэффициент усиления тока базы будет лежать в диапазоне β =50÷100.

6.2.1 Статические вольт-амперные характеристики транзистора, включенные по схеме с общим эмиттером

Рассмотрим ВАХ pnp -транзистора в режиме ОЭ (рис. 6.13, 6.14).

При U КЭ =0
. Сувеличением напряжения U БЭ концентрация на переходе ЭБ растет (рис. 6.15,а), градиент концентрации инжектированных дырок растет, диффузионный ток дырок, как и в прямо смещенном pn -переходе, растет экспоненциально (т. А) и отличается от тока эмиттера только масштабом (6.36).

При обратных напряжениях на коллекторе и фиксированном напряжении на ЭП |U БЭ | (рис. 6.15,б) постоянной будет и концентрация дырок в базе вблизи эмиттера. Увеличение напряжения U КЭ будет сопровождаться расширением ОПЗ коллекторного перехода и уменьшением ширины базы (эффект Эрли) и, следовательно, уменьшением общего количества дырок, находящихся в базе.

При этом градиент концентрации дырок в базе будут расти, что приводит к дальнейшему уменьшению их концентрации. Поэтому число рекомбинаций электронов и дырок в базе в единицу времени уменьшается (возрастает коэффициент переноса ). Так как электроны для рекомбинации приходят через базовый вывод, ток базы уменьшается и входные ВАХ смещаются вниз .

При U БЭ =0 и отрицательном напряжении на коллекторе (U кб << 0) ток через эмиттерный переход равен нулю, в базе транзистора концентрация дырок меньше равновесной, так как у КП эта концентрация равна нулю, а у ЭП ее величина определяется равновесным значением. Через коллекторный переход протекает ток экстрагированных из коллектора дырок I КЭ 0 .

В базе, как и в pn -переходе при обратном смещении, процесс тепловой генерации будет преобладать над процессом рекомбинации. Генерированные электроны уходят из базы через базовый вывод, что означает наличие электрического тока, направленного в базу транзистора (т. В). Это – режим отсечки , он характеризуется сменой направления тока базы.

Выходные ВАХ.

В активном режиме (|U КЭ |> |U БЭ |>0 ) поток инжектированных эмиттером дырок p экстрагируется коллекторным переходом также, как и в режиме ОБ, с коэффициентом
. Часть дырок(1-α) p рекомбинирует в базе в электронами, поступающими из омического контакта базы.

При увеличении тока базы отрицательный заряд электронов уменьшает потенциальный барьер эмиттерного перехода, вызывая дополнительную инжекцию дырок в базе.

Проанализируем, почему малые изменения тока базы I Б вызывают значительные изменения коллекторного тока I К. Значение коэффициента β , существенно большее единицы, означает, что коэффициент передачи α близок к единице. В этом случае коллекторный ток близок к эмиттерному току, а ток базы (по физической природе рекомбинационный) существенно меньше и коллекторного и эмиттерного тока. При значении коэффициента α = 0,99 из 100 дырок, инжектированных через эмиттерный переход, 99 экстрагируются через коллекторный переход, и лишь одна прорекомбинирует с электронами в базе и даст вклад в базовый ток.

Увеличение базового тока в два раза (должны прорекомбинировать две дырки) вызовет в два раза большую инжекцию через эмиттерный переход (должно инжектироваться 200 дырок) и соответственно экстракцию через коллекторный (экстрагируется 198 дырок). Таким образом, малое изменение базового тока, например, с 5 до 10 мкА, вызывает большие изменения коллекторного тока, соответственно с 500 мкА до 1000 мкА. Ток базы стократно вызывает увеличение тока коллектора.

По аналогии с (6.34) можно записать:

Учитывая (6.1):
, получим:

Учитывая, что

, а

где - сквозной тепловой ток отдельно взятого коллекторногоpn -перехода в режиме оторванной базы (при
, т. С, режим отсечки ). За счет прямого смещения базового перехода (рис. 6.16) ток
много больше теплового тока коллектора I к 0 .

Рис. 6.16 U БЭ =const,U КЭ – переменное

В режиме насыщения база должна быть обогащена неосновными носителями. Критерием этого режима является равновесная концентрация носителей на КП (U КБ =0 ). В силу уравнения U КЭ = U КБ + U БЭ, равенство напряжения на коллекторном переходе нулю может иметь место при небольших отрицательных напряжениях между базой и эмиттером. При U КЭ 0 иU БЭ <0, оба перехода смещаются в прямом направлении, их сопротивление падает. При малых напряжениях на коллекторе (U КЭ < U БЭ ) U КБ меняет свой знак, сопротивление коллекторного перехода резко уменьшается, коллектор начинает инжектировать дырки в базу. Поток дырок из коллектора компенсирует поток дырок из эмиттера. Ток коллектора меняет свой знак (на выходных ВАХ эта область обычно не показывается).

При больших напряжениях на коллекторе возможен пробой коллекторного перехода за счет лавинного умножения носителей в ОПЗ (т. D). Напряжение пробоя зависит от степени легирования областей транзистора. В транзисторах с очень тонкой базой возможно расширение ОПЗ на всю базовую область (происходит прокол базы).

Сравнивая выходные ВАХ транзистора, включенного по схеме с ОЭ и ОБ (рис. 6.17), можно заметить две наиболее существенные особенности: во-первых, характеристики в схеме с ОЭ имеют больший наклон, свидетельствующий об уменьшении выходного сопротивления транзистора и, во-вторых, переход в режим насыщения наблюдается при отрицательных напряжениях на коллекторе.

Рост тока коллектора с увеличением U КЭ определяется уменьшением ширины базы. Коэффициенты переноса æ и передачи тока эмиттера α растут, но коэффициент передачи тока базы в схеме с ОЭ
растет быстрееα . Поэтому при постоянном токе базы ток коллектора увеличивается сильнее, чем в схеме с ОБ.

Рис. 6.23 Выходные характеристики pnp -транзистора

а – в схеме с ОБ, б – в схеме с ОЭ

6.3 Включение транзистора по схеме с общим коллектором

Если входная и выходная цепи имеют общим электродом коллектор (ОК) и выходным током является ток эмиттера, а входным ток базы, то для коэффициента передачи тока справедливо:

Вв таком включении коэффициент передачи тока несколько выше, чем во включении ОЭ, а коэффициент усиления по напряжению незначительно меньше единицы, так как разность потенциалов между базой и эмиттером практически не зависит от тока базы. Потенциал эмиттера практически повторяет потенциал базы, поэтому каскад, построенный на основе транзистора с ОК, называют эмиттерным повторителем . Однако этот тип включения используется сравнительно редко.

Сопоставляя полученные результаты, можно сделать выводы :

    Схема с ОЭ обладает высоким усилением как по напряжению, так и по току, У нее самое большое усиление по мощности. Отметим, что схема изменяет фазу выходного напряжения на 180. Это самая распространенная усилительная схема.

    Схема с ОБ усиливает напряжение (примерно, как и схема с ОЭ), но не усиливает ток. Фаза выходного напряжения по отношению к входному не меняется. Схема находит применение в усилителях высоких и сверхвысоких частот.

    Схема с ОК (эмиттерный повторитель) не усиливает напряжение, но усиливает ток. Основное применение данной схемы - согласование сопротивлений источника сигнала и низкоомной нагрузки.



Просмотров