Сенсорный экран. Емкостной и резистивный сенсорные экраны

Экраны современных устройств способны не только выводить полезную информацию и изображения, но и позволяют с помощью сенсоров взаимодействовать с самим устройством. Первоначально сенсорные экраны использовались лишь в некоторых моделях карманных компьютеров, однако на сегодняшний день сенсорные экраны широко применяются в различных мобильных устройствах, видео и фотокамерах, плеерах, инфокиосках и других устройствах. Стоит отметить, что в подобных устройствах применяется один из видов сенсорных экранов. На сегодняшний день разработано и широко применяется несколько видов сенсорных панелей, каждая из которых имеет свои достоинства и недостатки.
На данный момент выделяют четыре основных вида сенсорных экранов: инфракрасные, емкостные, резистивные, сенсорные экраны ПАВ. Наибольшее распространение в мобильных устройствах получили емкостные и резистивные сенсорные экраны. Если не вдаваться в подробности, то можно сказать что главным их отличием является то, что емкостные экранные распознают касание, а резистивные – нажатие.

Резистивные сенсорные экраны

Резистивные сенсорные экраны широко применяются в мобильных устройствах. Это объясняется низкой себестоимостью изготовления и простотой технологии. Резистивный сенсорный экран представляет собой LCD дисплей, на который сверху установлены две прозрачные пластины, между которыми находится слой диэлектрика. Верхняя пластина, на которую нажимает пользователь, является гибкой, а нижняя жестко прикреплена к экрану. На поверхности пластин, обращенные друг к другу, наносятся проводники.
Напряжение микроконтроллером последовательно подается на электроды нижней и верхней пластины. В тот момент, когда пользователь нажимает на экран, верхняя пластина прогибается и ее проводящий слой касается нижнего, при этом сопротивление всей системы изменяется. Микроконтроллер фиксирует это изменение и определяет координаты точки нажатия.
К достоинствам резистивных экранов можно отнести малую себестоимость производства, хорошую чувствительность. К тому же на резистивный экран можно нажимать как пальцем, так и любым другим предметом.
Среди недостатков можно выделить плохое светопропускание. Это компенсируется более яркой подсветкой. Резистивные сенсорные экраны не поддерживают множественные нажатия (мультитач) и не могут измерять силу нажатия. К недостаткам также можно причислить достаточно быстрый механический износ, однако по сравнению с периодом эксплуатации мобильного телефона этот недостаток оказывается не таким важным, поскольку телефон в большинстве случаев выходит из строя раньше, чем его сенсорный экран.
Резистивные сенсорные экраны используются в КПК, мобильных телефонах, коммуникаторах, смартфонах, POS-терминалах, медицинском оборудовании.

Сенсорные экраны ПАВ (основанные поверхностно-акустических волнах)

Принцип работы экрана ПАВ заключается в следующем. В углах экрана располагаются пьезоэлементы, преобразующие подаваемые электрические сигналы в ультразвуковые волны и направляющие их вдоль поверхности экрана. На обратной стороне экрана находятся отражатели, распределяющие эти волны по всему экрану. На противоположных от отражателей сторонах экрана располагаются сенсоры, фокусирующие ультразвуковые волны и предающие их на преобразователь. Преобразователи в свою очередь преобразуют звуковые волны в электрические сигналы и подают их на микроконтроллер. Так для микроконтроллера экран представляет собой цифровую матрицу, каждая ячейка которой соответствует определенной точке экрана.
В тот момент, когда пользователь касается пальцем экрана, в точке касания происходит поглощение ультразвуковых волн, и, как следствие, изменяется общая картина распределения волн. В месте касания ультразвуковые волны поглощаются, в результате на выходе преобразователя появляется слабый сигнал, соответствующий логическому нулю. Таким образом вычисляются координаты точки касания.
К достоинствам сенсорных экранов ПАВ можно отнести долговечность (до 60 млн. касаний), отличную прозрачность, поскольку экран не имеет проводящих поверхностей. К тому же сенсорные экраны ПАВ могут определять не только координаты точки нажатия, но и силу нажатия.
Среди недостатков можно выделить низкую точность определения координат, по сравнению с емкостными. Также при воздействии различных вибраций, акустических шумов наблюдаются сбои в работе экрана. Любая грязь на экране может заблокировать его работу.
Сенсорные экраны ПАВ применяются в игровых автоматах, образовательных учреждениях, инфокиосках.

Инфракрасные сенсорные экраны

Принцип работы и устройство сенсорного экрана сходно с экраном ПАВ. На двух соседних сторонах экрана расположены светодиоды, которые излучают инфракрасные лучи. На противоположных сторонах располагаются фототранзисторы, принимающие эти лучи. Т.е. весь экран как бы покрыт сеткой пересекающихся перпендикулярных лучей. В тот момент, когда пользователь касается экрана, лучи перекрываются и не достигают фототранзисторов. Микроконтроллер считывает эту информацию и определяет координаты точки касания.
Инфракрасные сенсорные экраны применяются в торговых автоматах, инфокиосках, в медицинском оборудовании и других устройствах.
Среди достоинств инфракрасных экранов можно выделить простоту устройства, ремонтопригодность, долговечность, прочность.

Емкостные сенсорные экраны

Емкостные сенсорные экраны подразделяются на два вида: проекционно-емкостные и поверхностно-емкостные. Поверхностно-емкостные экраны состоят их стекла, на поверхность которого наносится прозрачное тонкое проводящее покрытие, защищенное сверху пленкой. По краям стеклянной пластины располагаются печатные электроды, через которые микроконтроллером на проводящее покрытие подается переменное низковольтное напряжение.
В тот момент, когда пользователь касается экрана, в точке прикосновения образуется импульс тока. При этом его величина пропорциональна расстояниям от точки касания до углов экрана. Микроконтроллер считывает эту информацию и вычисляет координаты точки прикосновения.
К достоинствам поверхностно-емкостных сенсорных экранов можно причислить отличное светопропускание, большой ресурс касаний и малое время отклика.
Среди недостатков можно отметить требовательность к внешней температуре, электроды, находящиеся по бокам пластины в большинстве случае не подходят для мобильных устройств. К тому же поверхностно-резистивные экраны не поддерживают множественное касание, не могут определить силу нажатия. Касаться таких экранов можно только специальным стилусом или пальцами.
Поверхностно-емкостные сенсорные экраны нашли применение в инфокиосках, некоторых банкоматах и охраняемых помещениях.

В конструкцию проекционно-емкостных сенсорных экранов входит стекло, на которые нанесены горизонтальные ведущие и вертикальные определяющие линии проводящего материала, которые разделены слоем диэлектрика.
Принцип работы проекционно-емкостного сенсорного экрана заключается в следующем. На электроды, расположенные в проводящем слоем, микроконтроллером подается напряжение и измеряется амплитуда импульсов тока. При касании экрана емкость электродов в точке касания изменяется. При этом микроконтроллер может определить место касания (место пересечения электродов с большой емкостью).
Среди достоинств проекционно-емкостных сенсорных экранов можно отметить быструю скорость отклика на касание, поддержку мультитач, возможность определения силы нажатия, и более точное, по сравнению с резистивными экранами, определение координат касания. К тому же проекционно-резистивные экраны обладают большой надежностью и сроком службы.
Сферам применения проекционно-емкостных экранов: банкоматы, платежные терминалы, тачпады ноутбуков, коммуникаторы, iPad, iPhone и другие устройства.

Экраны современных устройств могут не только выводить изображение, но и позволяют взаимодействовать с устройством посредством сенсоров.

Изначально сенсорные экраны применялись в некоторых карманных компьютерах, а на сегодняшний день сенсорные экраны находят широкое применение в мобильных устройствах, плеерах, фото и видеокамерах, информационных киосках и так далее. При этом в каждом из перечисленных устройств может применяться тот или иной тип сенсорного экрана. В настоящее время разработано несколько типов сенсорных панелей, и, соответственно, каждая из них обладает своими достоинствами и недостатками. В данной статье мы как раз и рассмотрим, какие же бывают типы сенсорных экранов, их достоинства и недостатки, какой тип сенсорного экрана лучше.

Существует четыре основных типа сенсорных экранов: резистивные, емкостные, с определением поверхностно-акустических волн и инфракрасные . В мобильных же устройствах наибольшее распространение получили только два: резистивные и емкостные . Основным их отличием является тот факт, что резистивные экраны распознают нажатие, а емкостные – касание.

Резистивные сенсорные экраны

Данная технология получила наибольшее распространение среди мобильных устройств, что объясняется простотой технологии и низкой себестоимостью производства. Резистивный экран представляет собой LCD дисплей, на который наложены две прозрачные пластины, разделенные слоем диэлектрика. Верхняя пластина гибкая, так как на нее нажимает пользователь, нижняя же жестко закреплена на экране. На обращенные друг другу поверхности нанесены проводники.

Резистивный сенсорный экран

Микроконтроллер подает напряжение последовательно на электроды верхней и нижней пластины. При нажатии на экран гибкий верхний слой прогибается, и его внутренняя проводящая поверхность касается нижнего проводящего слоя, изменяя тем самым сопротивление всей системы. Изменение сопротивления фиксируется микроконтроллером и таким образом определяются координаты точки касания.

Из плюсов резистивных экранов можно отметить простоту и малую стоимость, неплохую чувствительность, а также возможность нажимать на экран как пальцем, так и любым предметом. Из минусов необходимо отметить плохое светопропускание (в результате приходится использовать более яркую подсветку), плохая поддержка множественных нажатий (multi-touch), не могут определять силу нажатия, а также довольно быстрый механический износ, хотя в сравнении со временем жизни телефона, этот недостаток не так уж и важен, так как обычно быстрее телефон выходит из строя, чем сенсорный экран.

Применение : сотовые телефоны, КПК, смартфоны, коммуникаторы, POS-терминалы, TabletPC, медицинское оборудование.

Емкостные сенсорные экраны

Емкостные сенсорные экраны делятся на два типа: поверхностно-емкостные и проекционно-емкостные . Поверхностно-емкостные сенсорные экраны представляют собой стекло, на поверхность которого нанесено тонкое прозрачное проводящее покрытие, поверх которого нанесено защитное покрытие. По краям стекла расположены печатные электроды, которые подают на проводящее покрытие низковольтное переменное напряжение.

Поверхностно-емкостной сенсорный экран

При касании экрана образуется импульс тока в точке контакта, величина которого пропорциональна расстоянию из каждого угла экрана до точки касания, таким образом, вычислить координаты места касания контроллеру достаточно просто, сравнить эти токи. Из достоинств поверхностно-емкостных экранов можно отметить: хорошее светопропускание, малое время отклика и большой ресурс касаний. Из недостатков: размещенные по бокам электроды плохо подходят для мобильных устройств, требовательны к внешней температуре, не поддерживают multi-touch, касаться можно пальцами или специальным стилусом, не могут определять силу нажатия.

Применение : информационные киоски в охраняемых помещениях, в некоторых банкоматах.

Проекционно-емкостные сенсорные экраны представляют собой стекло с нанесенными на него горизонтальными ведущими линиями проводящего материала и вертикальными определяющими линиями проводящего материала, разделенные слоем диэлектрика.

Проекционно-емкостной сенсорный экран

Работает такой экран следующим образом: на каждый из электродов в проводящем материале микроконтроллером последовательно подается напряжение и измеряется амплитуда возникающего в результате импульса тока. По мере приближения пальца к экрану емкость электродов, находящихся под пальцем, изменяется, и таким образом контроллер определяет место касания, то есть координаты касания – это пересекающиеся электроды с возросшей емкостью.

Достоинством проекционно-емкостных сенсорных экранов является быстрая скорость отклика на касание, поддержка multi-touch, более точное определение координат по сравнению с резистивными экранами и определение силы нажатия. Поэтому эти экраны в большей степени используются в таких устройствах, как iPhone и iPad. Также стоит отметить большую надежность этих экранов и, как следствие, больший срок работы. Из недостатков можно отметить, что на таких экранах касаться можно только пальцами (рисовать или писать от руки пальцами очень неудобно) или специальным стилусом.

Применение : платежные терминалы, банкоматы, электронные киоски на улицах, touchpads ноутбуков, iPhone, iPad, коммуникаторы и так далее.

Сенсорные экраны ПАВ (поверхностно-акустические волны)

Состав и принцип работы данного типа экранов следующий: по углам экрана размещены пьезоэлементы, которые преобразуют подаваемый на них электрический сигнал в ультразвуковые волны и направляют эти волны вдоль поверхности экрана. Вдоль краев одной стороны экрана распределены отражатели, которые распределяют ультразвуковые волны по всему экрану. На противоположных от отражателей краях экрана расположены сенсоры, которые фокусируют ультразвуковые волны и передают их далее на преобразователь, который в свою очередь преобразует ультразвуковую волну обратно в электрический сигнал. Таким образом, для контроллера экран представляется в виде цифровой матрицы, каждое значение которой соответствует определенной точке поверхности экрана. При касании пальцем экрана в любой точке происходит поглощение волн, и в результате общая картина распространения ультразвуковых волн изменяется и в результате преобразователь выдает более слабый электрический сигнал, который сравнивается с хранящейся в памяти цифровой матрицей экрана, и таким образом вычисляются координаты касания экрана.

Сенсорный экран ПАВ

Из достоинств можно отметить высокую прозрачность, так как экран не содержит проводящих поверхностей, долговечность (до 50 млн. касаний), а также сенсорные экраны ПАВ позволяют определять не только координаты нажатия, но и силу нажатия.

Из недостатков можно отметить более низкую точность определения координат, чем у емкостных, то есть рисовать на таких экранах не получится. Большим недостатком являются сбои в работе при воздействии акустических шумов, вибраций или при загрязнении экрана, т.е. любая грязь на экране блокирует его работу. Также данные экраны корректно работают только с предметами, поглощающими акустические волны.

Применение : сенсорные экраны ПАВ в основном в охраняемых информационных киосках, в образовательных учреждениях, в игровых автоматах и так далее.

Инфракрасные сенсорные экраны

Устройство и принцип работы инфракрасных сенсорных экранов довольно простой. Вдоль двух прилегающих друг к другу сторон сенсорного экрана расположены светодиоды, излучающие инфракрасные лучи. А на противоположной стороне экрана расположены фототранзисторы, которые принимают инфракрасные лучи. Таким образом, весь экран покрыт невидимой сеткой пересекающихся инфракрасных лучей, и если коснуться экрана пальцем, то лучи перекрываются и не попадают на фототранзисторы, что немедленно регистрируется контроллером, и таким образом определяются координаты касания.

Инфракрасный сенсорный экран

Применение : инфракрасные сенсорные экраны используются в основном в информационных киосках, торговых автоматах, в медицинском оборудовании и т.д.

Из достоинств можно отметить высокую прозрачность экрана, долговечность, простоту и ремонтопригодность схемы. Из недостатков: боятся грязи (поэтому используются только в помещении), не могут определять силу нажатия, средняя точность определения координат.

P.S. Итак, мы рассмотрели основные типы наиболее распространенных сенсорных технологий (хотя есть еще и менее распространенные, такие, как оптические, тензометрические, индукционные и так далее). Из всех этих технологий наибольшее распространение в мобильных устройствах получили резистивные и емкостные, так как обладают высокой точностью определения точки касания. Из них наилучшими характеристиками обладают проекционно-емкостные сенсорные экраны.

Текст подготовлен по материалам из открытых источников методистами по Технологии Карабиным А.С., Л.В. Гаврик, С.В. Усачёвым

Отличный пост из omgadget.ru о том, как работают сенсорные экраны. Давно хотел узнать, почему айфонами можно управлять пальцем, но нельзя например карандашом

Сегодняшние сенсорные экраны подразделяются на несколько типов в зависимости от физического принципа действия: резистивные (четырех-, пяти- или восьмипроводные), емкостные, проекционно-ёмкостные, матричные, экраны на основе поверхностно-акустических волн, оптические, тензометрические и экраны на основе инфракрасных лучей.

Запатентованных названий технологий еще больше - несколько десятков. Наибольшее распространение получили резистивные и емкостные экраны, а остальные либо безнадежно устарели, либо узкоспециализированы.

Резистивный экран

Наиболее простым в реализации типом резистивного экрана является четырехпроводной. Он состоит из стеклянной панели и гибкой пластиковой мембраны, на которые нанесено тонкое проводящее покрытие. Пространство между стеклом и мембраной заполнено микроизоляторами, надёжно изолирующими токопроводящие поверхности. По краям каждого слоя установлены тонкие металлические пластинки — электроды. В заднем слое с резистивным материалом они расположены вертикально, а в переднем — горизонтально, что необходимо для вычислений координат. Когда на экран нажимают, панель и мембрана замыкаются, специальный датчик регистрирует изменение сопротивления в точке нажатия и преобразует его в сигнал. Усовершенствованной вариацией являются восьмипроводные сенсорные экраны. Их точность выше, однако надежность и долговечность хромают.



Пятипроводной экран более надёжен за счёт того, что резистивное покрытие на мембране заменено проводящим, которое продолжит работать даже с поврежденной мембраной. На заднее стекло нанесено покрытие с четырьмя электродами по углам, которые постоянно находятся под напряжением. А вот пятый электрод является выводом переднего проводящего слоя. Как только вы коснетесь экрана, верхний и нижний слои сомкнутся, а контроллер сперва зафиксирует изменение напряжения на переднем слое, то есть сам факт касания. Далее сначала на заднем слое заземляются два электрода по горизонтали, а затем два других, но по вертикали.

LG Optimus GT 540

Емкостные сенсорные экраны

Емкостный (как и поверхностно-емкостный) экран устроен сложнее и использует тот факт, что тело человека и экран образуют конденсатор, который проводит переменный ток.

Такой экран представляет собой стеклянную панель, покрытую прозрачным резистивным материалом, чтобы обеспечить электрический контакт с телом. Электроды, расположенные по углам экрана, подают на проводящий слой небольшое переменное напряжение. При касании экрана пальцем или другим проводящим предметом происходит утечка переменного тока через упомянутый конденсатор. Чем ближе палец к электроду, тем меньше сопротивление экрана, а значит, сила тока больше. Все это регистрирую датчики, передающие информацию для дальнейшей обработки процессору.

Емкостные сенсорные экраны долговечны и выдерживают до 200 миллионов нажатий. Их точность немного лучше чем у резистивных, а прозрачность превышает 90%. Однако такие дисплеи боятся жидкостей, непроводящих загрязнений.


iPhone 3G

Матричные сенсорные экраны

Тут конструкция очень напоминает резистивный экран, но упрощена до безобразия. На стекло нанесены горизонтальные проводники, на мембрану — вертикальные. При прикосновении к экрану проводники соприкасаются и замыкаются крест-накрест.

Процессор отслеживает, какие именно проводники замкнулись, после чего легко вычисляет координаты нажатия. Вот собственно и все. Такие экраны имеют очень низкую точность по сравнению с другими типами тачскринов, поэтому давно не применяются. Матричной может быть и просто панель кнопок, расположенных на перекрестьях проводников.


Проекционно-емкостные сенсорные экраны

Зато проекционно-емкостные дисплеи поддерживают одновременные нажатия в нескольких местах, хотя имеют еще более сложное строение.

На внутренней стороне такого экрана нанесена сетка электродов, при соприкасании с которыми образуется конденсатор. В месте образования конденсатора изменяется его электрическая емкость, а контроллер определяет точку пересечения электродов. Дальше все как обычно - контроллер, вычисления, координаты.

Если касаться экрана в разных местах, то и конденсаторов образуется несколько, что дает возможность реализовать мультитач-технологию.


iPad 2

Экран с сеткой инфракрасных лучей

Принцип работы инфракрасной сенсорной панели прост и чем-то напоминает матричный.
Вот только здесь вертикальные и горизонтальные проводники заменены инфракрасными лучами. Вокруг такого дисплея проходит рамка со встроенными излучателями и приемниками. В момент касания такого дисплея некоторые лучи перекрываются и не достигают своего пункта назначения - приемника. Дальше контроллеру не составит труда вычислить место контакта.

Такие дисплеи отлично пропускают свет и крайне долговечны, потому как обходятся вовсе без чувствительного покрытия. Тем не менее, они имеют не самую высокую точность и боятся загрязнений. В настоящее время выпускаются огромные рамки с диагональю до 150 дюймов для использования в сочетании с проектором или обычным монитором.


Sony Reader PRS-650

Сенсорные экраны на поверхностно-акустических волнах (ПАВ)

Этот экран с пугающим названием представляет собой стеклянную панель со встроенными по углам пьезоэлектрическими преобразователями (ПЭП). По периметру дисплея располагаются отражающие и приемные датчики. Контроллер формирует сигналы высокой частоты и посылает его на ПЭП. Тот в свою очередь преобразует этот сигнал в акустические колебания, которые отражаются от отражающих датчиков. Затем отраженные волны улавливаются приемниками и снова посылаются на ПЭП для обратного преобразования в электрический сигнал. При касании экрана пальцем часть энергии акустических волн поглощается. Приёмники улавливают это изменение, а сложный процессор вычисляет положение точки касания.

Главным достоинством экрана на ПАВ является возможность отслеживать не только координаты точки, но и силу нажатия, благодаря тому, что степень поглощения акустических волн зависит от величины давления в точке касания. Данное устройство имеет очень высокую прозрачность, так как отображение картинки с экрана происходит без всяких препятствий в виде проводящих слоев, как это сделано в резистивных экранах. Такие экраны сложны в реализации, но довольно долговечны. Они выдерживают до 50 миллионов касаний и часто применяются в игровых автоматах, в охраняемых справочных системах и образовательных учреждениях. Главным недостатком экрана на ПАВ являются сбои в работе при наличии вибрации и шума, а также при загрязнении экрана.

Принцип работы тачскринов December 31st, 2016

Сначала сенсорные экраны (тачскрины) встречались крайне редко. Их можно было найти, в основном, лишь в некоторых карманных компьютерах (КПК, PDA). Как известно, эти устройства так и не получили широкого распространения, поскольку им не хватало самого важного: функциональности телефона. История смартфонов тесно связана с тачскринами. А поэтому современного человека с «умным телефоном» в кармане сенсорным экраном уже не удивишь. Тачскрин нашел широкое применение и в модных дорогих девайсах и даже в сравнительно дешевых телефонах. Но не будем в очередной раз обсуждать достоинства и недостатки тех или иных моделей телефонов. В этом вопросе каждый пользователь способен определиться сам.

Поговорим о принципах работы трех типов сенсорных экранов, которые вы можете встретить в современном устройстве.

Итак, сенсорные экраны перестали быть слишком дорогими. Кроме того, тачскрины стали намного «отзывчивее» и касания пользователя теперь распознают превосходно. Это проложило им широкую дорогу к широким массам пользователей. В настоящее время известны три основных конструкции тачскринов:


1.Резистивные или попросту «упругие» (Resistive)

2.Емкостные (Capacitive)

3.Волновые (Surface acoustic wave)


О резистивном тачскрине. Недавнее прошлое

Резистивная система представляет собою обычное стекло, покрытое слоем проводника электричества и упругой металлической «пленкой», тоже обладающей токопроводящими свойствами. Между этими двумя слоями при помощи специальных распорок оставляют пустое пространство. А поверхность экрана покрыта материалом, защищающим его от царапин.

Во время работы пользователя с тачскрином, электрический заряд проходит через оба слоя. Каким образом все происходит? Пользователь касается экрана в определенной точке и упругий верхний слой приходит в соприкосновение с проводниковым слоем. Причем именно в этой точке. Затем компьютер определяет координаты точки, которой коснулся пользователь.

Когда координаты уже известны устройству, специальный драйвер переводит прикосновение в известные операционной системе команды. Здесь уместна аналогия с драйвером обычной компьютерной мышки. Он занимается тем же самым: объясняет операционной системе, что именно хотел ей сказать пользователь нажатием кнопки или перемещением манипулятора. С экранами этого типа чаще всего используют специальные стилусы.

Резистивные экраны можно обнаружить в сравнительно немолодых устройствах. Именно таким сенсорным дисплеем был оборудован IBM Simon, древнейший из сознанных нашей цивилизацией смартфонов.


Устройство емкостного экрана. Цифровое настоящее

В тачскринах этой конструкции стеклянная основа покрыта слоем, играющим роль вместилища-накопителя электрического заряда. Своим касанием пользователь высвобождает часть электрического заряда в определенной точке. Это уменьшение определяется микросхемами, расположенными в каждом из углов экрана. Компьютер вычисляет разницу электрических потенциалов между различными частями экрана, и информация о касании во всех подробностях немедленно передается в программу-драйвер тачскрина.

Важным преимуществом емкостных тачскринов является способность этого типа экранов сохранять почти 90 % изначальной яркости дисплея. В экранах резистивного типа сохраняется лишь порядка 75 % изначального света. По этой причине изображения на емкостном экране выглядят значительно более четким, чем на тачскринах резистивной конструкции.


Волновые сенсорные дисплеи. Яркое будущее

На концах осей X и Y координатной сетки стеклянного экрана располагается по преобразователю. Один из них передающий, а второй принимающий. На стеклянной основе располагаются и рефлекторы, «отражающие» электрический сигнал, передаваемый от одного преобразователя к другому.

Преобразователь-приемник точно «знает» состоялось ли нажатие и в какой именно точке оно произошло, поскольку своим касанием пользователь вносит прерывание в акустическую волну. Стекло волнового дисплея лишено металлического покрытия, что позволяет сохранить все 100 % изначального света. Благодаря своей столь приятной особенности, волновой экран является наилучшим выбором для пользователей, работающих в мелкими деталями графики. Ведь и резистивные и емкостные тачскрины не идеальны в плане четкости изображения. Покрытие задерживает свет и искажает картинку.

Некоторые особенности различных тачскринов


Самыми дешевыми и наименее четко передающими картинку сенсорными экранами являются резистивные. Кроме того, они же самые уязвимые. Любой острый предмет может повредить нежную резистивную «пленочку». Волновые тачскрины являются самыми дорогими среди себе подобных. Резистивная конструкция скорее относится к прошлому, волновая — к будущему, а емкостная — к настоящему. Хотя грядущее никому не известно и можно лишь предполагать, что та или иная технология имеет некоторые перспективы.

Для резистивной системы не имеет особого значения, коснулся пользователь экрана резиновым наконечником стилуса или пальцем. Достаточно и того, что два слоя пришли в соприкосновение. Емкостной экран распознает лишь касания токопроводящими предметами. Чаще всего пользователи работают с ними при помощи своих пальцев. В этом отношении экраны волновой конструкции ближе к резистивным. Отдать ей команду можно практически любым предметом, избегая при этом тяжелых и слишком маленьких объектов. То есть стержень шариковой ручки не подойдет.

А теперь, если читателям еще не наскучили технические подробности и инженерные тонкости, при наличии желания и свободного времени, они могут отправиться в гости к создателям Xbox One — игровой приставки, которой создатели Windows сумели удивить мир.


По материалам computer.howstuffworks.com


А я вам напомню про такую, пока «фантастическую» вещь, как и. И еще подробности и наверняка

Наши глаза являются основным источником информации, получаемой мозгом. Потому экран — важнейшая часть мобильного телефона и планшетника. Именно с него мы считываем информацию и осуществляем управление интерфейсом. В этом выпуске рубрики разберемся, как работают экраны мобильных устройств, какими они бывают и как правильно выбрать смартфон, отталкиваясь от этого параметра.

Если в экранах телевизоров и компьютерных мониторов на заре технологий использовался принцип электронно-лучевой трубки (ЭЛТ), то для мобильных устройств такой подход формирования изображения был неприемлем ввиду их малых размеров. В 70-х годах прошлого столетия был представлен первый жидкокристаллический монохромный экран. Первое время он использовался преимущественно в калькуляторах и электронных часах. С появлением мобильных телефонов технология производства дисплеев на основе жидких кристаллов перекочевала и к ним. Спустя время появились новые технологии на основе органических светодиодов, экраны стали сенсорными, гибкими.

Практически любой жидкокристаллический экран (ЖК или по-английски LCD) состоит из следующих компонентов:

  • Слоя жидких кристаллов, которые пропускают свет.
  • Активной матрицы, отвечающей за формирование изображения. Ее самой распространённой разновидностью является TFT, которая управляется с помощью тонкослойных транзисторов.
  • Светофильтров для получения цветного изображения. Как правило, это система RGB - красный, зелёный и синий
  • Источника света. Может быть как активным (смартфоны, телевизоры, мониторы и т.д.), так и пассивным - калькуляторы, электронные часы.

Существует много разновидностей ЖК-дисплеев. Самый простой и дешевый из них TN (Twisted Nematic) . Имеет плохие углы обзора, контрастность и цветопередачу, но зато высокое время отклика. Используется в основном в бюджетных устройствах и постепенно уходит из рынка. Более продвинутой технологией является IPS (in-plane switching). В отличие от TN, она характеризуется высокими углами обзора, отличной цветопередачей, повышенной контрастностью. Существует много разновидностей IPS, которые у разных производителей имеют свои названия. Основные:

  • Просто IPS - постепенно отмирает, главным недостатком является большое время отклика активного пикселя. Но еще очень часто используется в бюджетных смартфонах.
  • AS-IPS - продвинутая IPS, характеризующаяся более высокой степенью контрастности
  • IPS-pro - cследующий шаг в развитии с более высокой яркостью и цветопередачей. Этот дисплей в основном нашел свое применение во флагманских гаджетах.

Широко известный тип дисплея Retina является разновидностью IPS, но с высоким разрешением и уменьшенным размером субпикселя и пикселя. А вот у Самсунга есть PLS - та же модификация IPS, которая призвана уменьшить стоимость производства.

Кроме IPS существуют еще ЖК-дисплеи под названием Super LCD (разработка HTS), Super Clear LCD (Samsung), VA/MVA/PVA (используются в основном в мониторах).

Другим же витком развития дисплеев является технология, которая основана на органических светодиодах - OLED (Organic Light Emitting Diode). Суть ее в использовании вместо жидких кристаллов, которым необходима подсветка, органических светодиодов. Они светятся сами.

Есть несколько разновидностей OLEDдисплеев:

  • AMOLED (ActiveMatrixOLED) - использует органические светодиоды, которые управляются матрицей на основе тонкопленочных транзисторов (TFT). Интересной особенностью является формирование чёрного цвета - светодиоды просто отключаются, и в результате получается настоящий глубокий черный цвет, при этом уменьшается энергопотребление устройства в целом. Вот почему в смартфонах с AMOLED экранами рекомендуют темные темы оформления.
  • SuperAMOLED - усовершенствованный AMOLED. Эта технология предусматривает отсутствие воздушной прослойки между экраном и сенсором. В результате чего уменьшается толщина дисплея, повышается цветопередача и яркость. Такие экраны очень широко применяет в своих флагманах компании Samsung, Motorola и другие.

  • FOLED (Flexible OLED) - технология позволяющая создавать гибкие дисплеи на основе органических кристаллов. Яркий представитель такой реализации это линейка смартфонов Edge от Samsung.

Еще существует TOLED (TransparentOLED) - прозрачные дисплеи, SOLED (Staked OLED) - сложенные OLED, но они, возможно пока, в дисплеях для смартфонов не используются.

В целом, технология OLED имеет ряд преимуществ по сравнению с LCD:

  • Малая толщина экрана
  • Низкое энергопотребление
  • Очень быстрый отклик
  • Высокая контрастность
  • Возможность создания гибких дисплеев

Но и есть существенный недостаток - время жизни светодиодов. Со временем они умирают и при этом искажается изображение на экране. Хотя, возможно, это временная проблема органических дисплеев. Ведь наука не стоит на месте и разрабатываются новые долговечные светодиоды.

Следующим этапом развития может стать дисплеи с технологией TMOS (оптический затвор с временным разделением). Такие экраны могут быть более яркими, энергоэффективными и дешевле в производстве, нежели LCD и OLED.

Давайте еще кратко остановимся на других особенностях экранов современных гаджетом.

На сегодняшний день управление смартфоном с помощью пальцев рук уже стало для нас обыденностью. За такую функцию в экране отвечает сенсор. Хочу рассказать вам об их основных типах:

  • Резистивный сенсор - состоит из стеклянной пластины и мембраны, на которую нанесено резистивное покрытие. Когда мы нажимаем пальцем на экран, мембрана и пластина замыкаются и передают координаты нажатия микропроцессору. Их преимущество в том, что такой сенсор будет реагировать на любой предмет. А также он прост и дешев в изготовлении. К недостаткам стоит отнести плохую защищенность, светопроницаемость и долговечность. Широко использовался в первых КПК и смартфонах. На сегодня это уже редкость.

  • Емкостный сенсор - принцип работы состоит в том, что при прикосновении нашего пальца к стеклу, на которое нанесен электропроводный слой, происходит утечка тока. И место наибольшей утечки (точка контакта пальца со стеклом) регистрируется специальным контроллером. Такие сенсоры более прозрачные, нежели резистивные, а также выдерживают более 200 миллионов нажатий. Но на прикосновение, например, в перчатках, они не реагируют. Емкостный сенсор устанавливается в основном в бюджетных моделях смартфонов.

  • Следующим шагом развития стали проекционно-ёмкостные сенсорные экраны. На стекло такого экрана наносится сетка электрода (на дешевых китайских телефонах ее можно даже увидеть), которая вместе с пальцем человека образует конденсатор. Специальная электроника измеряет его емкость и определяет точку, в которой было соприкосновение. Плюсы в очень большой долговечности, чувствительности, а также такая технология позволяет распознавать одновременно несколько нажатий, иными словами, поддерживает мультитач. Недостаток заключается в необходимости сложной электроники по обработке сигнала, а исходя из этого и дороговизне. В очень многих современных гаджетах используется именно такой тип сенсора.

Это были основные типы сенсоров, который используются в современных смартфонах.

Дальше мы поговорим о плотности пикселей экрана . Эта величина является соотношением разрешения экрана и его физического размера. Иными словами - количество пикселей на дюйм диагонали смартфона. Это числа принято измерять в ppi (pixel per inch). Приведу пример, экран с диагональю — 5,1 дюйма и разрешением 2560×1440 пикселей имеет плотность точек 577 ppi. Чем больше такое число, тем четче и детализирование будет изображение на экране смартфона. Но сможет ли наш глаз различить отличия, например, между 400 и 500 ppi? Маркетологи фирм разработчиков уверены, что сможет, лично я в этом сомневаюсь….

Чтобы экран нашего любимого смартфона не царапался и не бился, были разработаны всевозможные защитные стекла. Одно из самых известных в мире - это Gorilla Glass. Недавно, была представлено его четвертая ревизия. По заявлениям разработчиков Gorilla Glass 4 обладает вдвое более высокой устойчивостью к повреждениям по сравнению с конкурирующим алюмосиликатным стеклом. Менее известным, но нехудшим по характеристикам, является стекло повышенной прочности Dragontrail. Его, например, широко использует в своих смартфонах китайский производитель Xiaomi.

Также часто стекла экранов покрывают специальным олеофобным покрытием, которое предназначено для защиты от жировых пятен.

1. Лучше выбрать IPS или OLED технологию, чем TN.

2. Многое зависит от производителя дисплеев, остерегайтесь китайских «ноунеймов». Выбирайте экраны от LG, Sony, Sharp и других именитых фирм.

3. За плотностью пикселей особо гнаться не стоит. HD разрешение достаточно при диагонали 5", FHD — при 5.5".

4. Какое бы хорошее стекло ни стояло, все равно, наклейте поверх защитную пленку, а лучше специальное стекло.

P.S. В статье не рассказывается про строение пикселя дисплея. Тема интересная и объемная, ей мы посвятим отдельный материал.



Просмотров