Устройство светодиодной лампочки на 220 вольт. Устройство светодиодной лампы. Разбираем лампу EKF серии FLL-A

Устройство светодиодной лампы на 220В значительно сложнее, чем у аналогичной лампы накаливания. Пытаясь сохранить привычную грушевидную форму, инженерам пришлось немало потрудиться. И, как оказалось, не зря! Новые осветительные приборы практически не греются, потребляют малое количество электроэнергии и стали значительно менее хрупкими. Но чего же особенного в светодиодной лампе и в чем сложность ее схемы? Давайте разберемся.

Конструктивная схема

Конструктивно схема светодиодной лампы на 220В состоит из трех основных частей: корпуса, электронной части и системы охлаждения. Сетевое напряжение через цоколь поступает на драйвер, где преобразуется в сигнал постоянного тока, необходимый для свечения светодиодов. Свет от излучающих диодов обладает широким углом рассеивания и поэтому не требует установки дополнительных линз. Достаточно обойтись рассеивателем. В процессе работы детали драйвера и светодиоды нагреваются. Поэтому в конструкции лампы обязательно должен быть продуман отвод тепла. К корпусной части светодиодной лампы относится цоколь, оболочка из пластика, внутри которой размещен драйвер, и полупрозрачная крышка в виде полусферы, по совместительству являющаяся рассеивателем света. В дорогих моделях ламп большую часть корпуса занимает ребристый радиатор из алюминия или специального теплопроводящего пластика. В лампочках бюджетного класса радиатор либо вовсе отсутствует, либо расположен внутри, а по окружности корпуса сделаны отверстия. Дешёвая китайская продукция мощностью до 7 Вт вовсе имеет сплошной корпус, без какого-либо отвода тепла.

В фирменных светодиодных лампах на 220В печатная плата с SMD светодиодами крепится к радиатору через термопасту для эффективного отвода тепла. В дешевых китайских моделях эта плата либо просто вставлена в пазы корпуса, либо прикреплена саморезами к металлической пластине для охлаждения кристаллов. Эффективность такого охлаждения крайне низкая, так как пластина имеет малую площадь, да и наносить термопасту китайские производители, как правило, забывают.
Вывод излучения происходит через рассеиватель, как правило, из матового пластика. А в дешевых светодиодных лампах на 220В такой корпус ещё надёжно скрывает недостатки китайской сборки от любопытных глаз потребителя. Крепится рассеиватель к основанию либо герметиком, либо резьбовым соединением.

Электрическая схема

Касательно электрической части между светодиодными лампами на 220В разных ценовых категорий также много отличий. В этом можно убедиться сразу после демонтажа рассеивателя. Достаточно рассмотреть качество пайки SMD элементов и соединительных проводов.

Недорогой китайской лампы на 220В

В лампочках стоимостью 2-3$ отсутствует какая-либо симметрия на плате со светодиодами, что свидетельствует о ручной пайке, а провода выбраны с минимально возможным сечением. Вместо надежного драйвера в них собрана простая схема бестрансформаторного питания с конденсаторами и выпрямителем. Напряжение сети сначала снижается неполярным металлопленочным конденсатором, выпрямляется, а затем сглаживается и повышается до нужного уровня. Ток нагрузки ограничивается обычным SMD резистором, который расположен на печатной плате со светодиодами.
При диагностике и ремонте светодиодных ламп такого типа важно соблюдать технику безопасности, т.к. все элементы электрической цепи потенциально находятся под высоким напряжением. Прикоснувшись пальцем к токоведущей части схемы по неосторожности можно получить электрический удар, а соскользнувший щуп мультиметра может закоротить провода с неприятными последствиями.

Фирменной светодиодной лампы

Фирменная светодиодная продукция отличается не только приятным внешним видом, но и качеством элементной базы. Непосредственно драйвер имеет более сложное устройство и зачастую собирается одним из двух способов. Первый предусматривает наличие импульсного трансформатора, импульсного преобразователя напряжения с последующей стабилизацией тока нагрузки.

Во втором случае обходятся без трансформатора, а основная функциональная нагрузка ложится на специальную микросхему – сердце драйвера. Её универсальность в том, что она стабилизирует входное напряжение, поддерживает выходной ток с заданной частотой (ЧИМ) или шириной импульса (ШИМ), допускает возможность диммирования, имеет систему отрицательной обратной связи. В качестве примера можно назвать, например, CPC9909.
Светодиоды в лампе на 220В с токовым драйвером надёжно защищены от перепадов напряжения и помех в сети, ток через них соответствует номинальному паспортному значению, а радиатор обеспечивает качественный теплоотвод. Такие лампочки прослужат намного дольше дешёвых китайских аналогов, тем самым доказывая преимущество светодиодов на деле.

Читайте так же

В отличие от обычных ламп накаливания, полупроводниковые лед светильники потребляют намного меньшие объёмы электроэнергии и относятся в связи с этим к категории экономичных. При этом долговечность их эксплуатации для некоторых моделей осветителей возрастает в несколько раз. С образцами современных моделей светодиодных лед ламп можно ознакомиться на рисунке, приводимом ниже.

Схема светодиодной лампы на 220 в спроектирована таким образом, что напряжение на её выходе посредством драйвера понижается до требуемой величины, которая, как правило, не превышает 1,8-4,0 Вольта (на каждом из светодиодов).

Принцип действия светодиодных ламп

Светодиодная лампочка представляет собой полупроводниковый элемент, содержащий в своём составе несколько слоёв, ответственных за преобразование текущего через них тока в видимый свет.

Важно! При изменении состава этого слоя в нём генерируется излучение определенного цвета (красного, зелёного, жёлтого или синего).

Поскольку лампы, в состав которых входят светодиоды, должны обеспечивать получение чистого дневного света, их разработчикам пришлось применить небольшую хитрость, заключающуюся в покрытии синего излучателя жёлтым люминофором. В такой конструкции под воздействием фотонов синего диапазона жёлтый люминофор начинает испускать собственное бесцветное излучение.

Типы светодиодов

За счёт различных подходов к сборке полупроводниковых чипов удалось создать следующие разновидности светодиодных излучателей:

  • DIP – светодиодные лампы, изготавливаемые на основе кристалла с размещённой сверху линзой и двумя подводящими проводниками. Этот вариант наиболее распространён на практике и используется для организации подсветки в различных световых устройствах;
  • Так называемая «Пиранья», частично напоминающая предыдущую конструкцию, но имеющая четыре вывода. Увеличение числа контактов повышает её надёжность и способствует улучшению отвода тепла (смотрите рисунок ниже);

Дополнительная информация. Такие светодиоды по большей части применяются в автомобилестроении.

  • SMD-светодиодные излучатели могут размещаться на плоских поверхностях, за счет чего удается уменьшить габариты светильника, а также улучшить теплоотводящие свойства. Они выпускаются в самых различных исполнениях и применяются в современных источниках светового излучения;
  • Изделия, изготавливаемые по СОВ технологиям, согласно которым чип впаивается непосредственно в плату. За счет такого устройства полупроводниковый лед переход надёжно защищается от окисления и перегрева. Одновременно с этим существенно повышается интенсивность диодного свечения.

Обратите внимание! Особенность перечисленных выше исполнений состоит в том, что в случае перегорания светодиода его придётся менять полностью, поскольку отремонтировать эти изделия путём замены отдельного чипа невозможно.

Ещё один недостаток таких светодиодов – их маленький размер, что вынуждает собирать их в группы по несколько штук. Кроме того, встроенный в них кристалл постепенно стареет, вследствие чего яркость лед излучателя со временем снижается. Далее будет рассмотрено устройство светодиодной лампы на 220в.

Устройство LED-диодов

Устройство светодиодной лампы на 220 вольт не отличается большой сложностью и вполне может быть рассмотрено даже на любительском уровне. Классическая светодиодная лампа на 220 вольт включает в свой состав следующие обязательные элементы:

  • Несущий корпус с цоколем;
  • Специальную рассеивающую линзу;
  • Отводящий тепло радиатор;
  • Модуль светодиодов LED;
  • Драйверы светодиодной лампы;
  • Блок питания.

Ознакомиться со строением LED-лампы на 220 вольт (технология СОВ) можно на размещённом ниже рисунке.

Этот светодиодный прибор изготавливается как единое целое и содержит в своей конструкции большое количество однородных кристаллов, распаиваемых при сборке с образованием многочисленных контактов. Для его подключения к драйверу достаточно присоединить всего одну из контактных пар (остальные кристаллы подключены параллельно).

По своей форме эти изделия могут быть круглыми и цилиндрическими, а к сети они подсоединяются посредством специального резьбового или штырькового цоколя. Для светодиодной системы общего пользования, как правило, выбираются светильники, показатель цветовой температуры которых составляет 2700К, 3500К или 5000К (при этом градации спектра могут принимать любые значения). Такие приборы довольно часто применяются в декоративных целях и для освещения рекламных баннеров и щитов.

Рассмотрим отдельные модули светодиодной лампы более подробно.

Драйвер

В упрощённом виде схема драйвера, используемого для питания лампы от сети 220 Вольт, выглядит, как это изображено на рисунке ниже.

Количество деталей в этом устройстве, выполняющем согласовательную функцию, относительно невелико, что объясняется особенностями схемного решения. Его электрическая схема содержит в своём составе два гасящих резистора R1, R2 и подключённые к ним по встречно-параллельному принципу светодиоды HL1и HL2.

Дополнительная информация. Такое включение ограничительных элементов обеспечивает защищённость схемы от обратных выбросов напряжения питания. Помимо этого, в результате такого включения частота поступающего на лампы сигнала возрастает вдвое (до 100 Гц).

Сетевое напряжение питания с действующим значением 220 Вольт подаётся в схему через ограничительный конденсатор С1, с которого оно поступает на выпрямительный мостик, а затем – непосредственно на лампу.

На заметку. Простота схемы согласующего устройства (драйвера) допускает возможность его ремонта своими руками.

Источник питания

Типовая схема источника питания LED-лампы изображена на рисунке, представленном ниже.

Эта часть осветительного прибора выполнена в виде отдельного блока и поэтому может свободно извлекаться из корпуса (с целью её ремонта своими руками, например). На входе схемы имеется выпрямительный электролит (конденсатор), после которого пульсации с частотой 100 Герц частично исчезают.

Резистор R1 необходим для образования цепочки разряда конденсатора при отключении схемы от источника питания.

Самостоятельный ремонт

В случае выхода из строя простейшего LED-осветителя, изготовленного на основе отдельных светодиодных элементов, его ремонт может быть осуществлён своими руками. Самостоятельный ремонт светодиодных ламп и устройств, электрические схемы которых были рассмотрены ранее, сводится к простой замене неисправных блоков и деталей.

Корпус изделия легко разбирается после того, как его аккуратно отделяют от цокольной части. Внутри конструкции располагается плата с рабочими светодиодами, количество которых отличается у разных моделей (смотрите фото ниже).

Обратите внимание! У широко распространённой модели лампы типа «MR 16», например, общее число светодиодов равно 27-ми 1,5 вольтовым элементам.

Для того чтобы получить доступ к печатной плате с размещенными на ней диодами, достаточно удалить защитную стеклянную линзу, аккуратно поддев её хорошо отточенной отверткой.

После разборки корпуса светодиодного изделия необходимо будет предпринять следующие шаги:

Дополнительная информация. Проверить исправность остальных элементов, которые содержит данная электросхема, можно путём подачи на них напряжения величиной от 1,5 до 2,5 Вольт (исправные диоды при подаче такого потенциала должны загораться).

  • При проверке потенциалами более 5-ти Вольт последовательно с проверяемым элементом включается ограничивающий резистор номиналом порядка 4,7-5,1 Ком;
  • В случае если все установленные в плату диоды исправны, но при горении постоянно мерцают, причиной этого может быть «пробой» конденсатора С1.

Для того чтобы убедиться в этом, следует проверить его номинальную ёмкость тем же мультиметром (о том, как это сделать, можно узнать в инструкции по применению прибора). Другой подход к решению данной проблемы предполагает простую замену конденсатора другим, заведомо исправным элементом, рассчитанным на напряжение не менее 400 Вольт.

Самостоятельное изготовление светильника

Изготовить осветитель на основе светодиодов своими руками, как говорится, «с нуля» – дело хлопотливое и не для всех подходящее. Проще сделать это, воспользовавшись уже отработавшим свой ресурс старым светильником подобного типа.

В этом случае самодельная светодиодная лампа будет набрана из новых элементов, запаянных на демонтированную из старого устройства или отремонтированную плату. Если на ней остались рабочие диоды, нужно будет заменить сгоревшие элементы новыми (желательно того же типа и конструкции).

Обратите внимание! При изготовлении фирменных ламп из соображений выгодности продаж рабочий ток отдельных светодиодов выбирается с предельно большим значением. При переделке такого устройства желательно впаять последовательно с каждым элементом ограничительное сопротивление порядка 1 Ком.

При необходимости для изготовления лампы своими руками можно использовать старую плату со схемой драйвера, заменив в ней все неисправные детали.

При отсутствии необходимых плат и деталей драйвер можно изготовить, ориентируясь на рассмотренную выше схему блока питания, совмещённого с преобразователем (смотрите рисунок выше). При доработке к ней следует добавить ещё один резистор (обозначим его как R3), используемый для разрядки конденсатора С2. В результате получится приведённая ниже схема.

Помимо резистора, в неё добавлены два типовых стабилитрона (VD2,VD3), обеспечивающих его шунтирование при обрыве цепи нагрузки.

Дополнительная информация. Если грамотно подобрать напряжение стабилизации ограничивающего диода, вполне можно будет обойтись одним стабилитроном.

Данная схема драйверного устройства рассчитана для подключения 20-ти бесцветных светодиодов определённого типа. Если их класс или общее количество будет иным, следует изменить номинал конденсатора С1 таким образом, чтобы нагрузочный ток в диодной цепочке был не менее 20-ти мА. Указанное его значение гарантирует достаточную яркость свечения этих приборов.

В качестве питающей драйвер схемы, как правило, используется узел, в состав которого не входит громоздкий трансформаторный элемент (такое включение называется «прямым»). Отсутствие трансформатора существенно упрощает сборку модуля и сокращает его размеры.

Важно! Но в этом случае реальна угроза попадания высокого напряжения на выход схемы (в случае пробоя ряда последовательно включённых элементов, например). Единственное утешение состоит в том, что такое случается крайне редко.

В заключительной части обзора отметим, что принципиальные схемы большинства из поступающих в продажу светодиодных изделий почти не отличаются одна от другой. Определённые различия наблюдаются лишь в типе используемых в них компонентов, а также в способе формирования выходного напряжения, осуществляемого драйвером.

Добавим к этому, что лампы на светодиодах, оснащённые специальными драйверами, надёжно защищаются от колебаний напряжения в сети, а входящий в их состав радиатор обеспечивает защиту изделия от перегрева. Применение самостоятельно изготовленных модулей за счёт их дополнительной доработки может существенно продлить сроки эксплуатации осветительных устройств, собранных на их основе.

Видео

Можно ли своими руками от начала до конца сделать светодиодную лампу (LED), работающую от напряжения 220 вольт? Оказывается, можно. В этом увлекательном занятии вам помогут наши советы и инструкции.

Преимущества светодиодных ламп

Светодиодное освещение в доме - это не просто современно, но и стильно, и ярко. Консервативным любителям ламп накаливания остаются слабенькие «лампочки Ильича» – Федеральный закон «Об энергосбережении», принятый в 2009 году, с 1 января 2011 года запрещает производство, импорт и продажу ламп накаливания мощностью более 100 Вт. Продвинутые пользователи давно перешли на компактные люминесцентные лампы (КЛЛ). Но светодиоды обходят всех своих предшественников:

  • энергопотребление светодиодной лампы меньше в 10 раз, чем у соответствующей лампы накаливания, и почти на 35% меньше, чем у КЛЛ;
  • сила света LED лампы больше соответственно на 8 и на 36%;
  • достижение полной мощности светового потока происходит мгновенно, в отличие от КЛЛ, которым для этого требуется около 2 минут;
  • себестоимость - при условии изготовления лампы самостоятельно - стремится к нулю;
  • светодиодные лампы экологичны, потому что не содержат ртути;
  • срок службы светодиодов измеряется десятками тысяч часов. Поэтому LED лампы практически вечны.

Сухие цифры подтверждают: за LED - будущее.

Конструкция современной заводской LED лампы

Светодиод здесь изначально собран из множества кристаллов. Поэтому для того, чтобы собрать такую лампу, не нужно припаивать многочисленные контакты, надо присоединить лишь одну пару.

Типы светодиодов

Светодиод - полупроводниковый многослойный кристалл с электронно-дырочным переходом. Пропуская через него постоянный ток, мы получаем световое излучение. От обычного диода светодиод отличается и тем, что при неправильном подключении он немедленно сгорает, так как имеет малое значение пробивного напряжения (несколько вольт). Если светодиод перегорает, его надо полностью менять, ремонт невозможен.

Есть четыре основных типа светодиодов:


Самодельная и правильно собранная LED лампа будет служить многие годы, при этом её можно будет ремонтировать.

Перед тем как приступить к самостоятельной сборке, нужно выбрать способ электропитания для нашей будущей лампы. Вариантов много: от батарейки до сети переменного тока на 220 вольт - через трансформатор или напрямую.

Проще всего собрать LED на 12 вольт из перегоревшей «галогенки». Но она потребует довольно массивного внешнего блока питания. Лампа же с обычным цоколем, рассчитанная на напряжение 220 вольт, подходит к любому патрону в доме.

Поэтому в нашем руководстве мы не будем рассматривать создание 12-вольтового LED источника света, а покажем пару вариантов конструирования лампы на 220 вольт.

Поскольку мы не знаем уровня вашей электротехнической подготовки, то не можем дать гарантии, что у вас на выходе получится правильно работающий прибор. Кроме того, вы будете работать с опасным для жизни напряжением, и если что-то будет сделано неточно и неправильно, возможны повреждения и ущерб, за что мы не будем нести ответственность. Поэтому будьте осторожны и внимательны. И у вас всё получится.

Драйверы для светодиодных ламп

Яркость свечения светодиодов прямо зависит от силы тока, проходящего через них. Для устойчивой работы они нуждаются в источнике постоянного напряжения и стабилизированном токе, не превышающем предельно допустимую для них величину.

Резисторами - ограничителями тока - можно обойтись лишь для маломощных светодиодов. Можно упростить несложный расчёт количества и характеристик резисторов, найдя в сети калькулятор светодиодов, в котором не только выдаются данные, но и создаётся готовая электрическая схема конструкции.

Для питания лампы от сети необходимо использовать специальный драйвер, преобразующий входное переменное напряжение в рабочее для светодиодов. Простейшие драйверы состоят из минимального количества деталей: входного конденсатора, нескольких резисторов и диодного моста.

В схеме простейшего драйвера через ограничительный конденсатор напряжение питания подаётся на выпрямительный мост, а затем на лампу

Подключение мощных светодиодов осуществляется через электронные драйверы, контролирующие и стабилизирующие ток и имеющие высокий КПД (90-95%). Они обеспечивают стабильный ток даже при резких изменениях напряжения питания в сети. Резисторы этого делать не умеют.

Рассмотрим самые простые и чаще всего используемые драйверы для светодиодных ламп:

  • линейный драйвер совсем прост и применяется для малых (до 100 мА) рабочих токов или в случаях, когда напряжение источника равно падению напряжения на светодиоде;
  • импульсный понижающий драйвер более сложен. Он разрешает запитывать мощные светодиоды источником намного более высокого напряжения, чем необходимо для их работы. Недостатки: большой размер и электромагнитные помехи, генерируемые дросселем;
  • импульсный повышающий драйвер используется, когда рабочее напряжение светодиода больше, чем напряжение, получаемое от источника питания. Недостатки те же, что и у предыдущего драйвера.

В любую LED лампу на 220 вольт для обеспечения оптимального режима работы всегда встроен электронный драйвер.

Чаще всего несколько неисправных светодиодных ламп разбирают, удаляют перегоревшие светодиоды и радиодетали драйвера, а из целых монтируют одну новую конструкцию.

Но можно сделать светодиодную лампу и из обычной КЛЛ. Это вполне себе привлекательная идея. Мы уверены, что у многих рачительных хозяев в ящиках с деталями и запчастями сохраняются неисправные «энергосберегайки». Выкинуть жалко, применить некуда. Сейчас мы расскажем, как из энергосберегающей лампы (цоколь E27, 220 В) создать светодиодную лампу буквально за пару часов.

Неисправная КЛЛ всегда даёт нам качественный цоколь и корпус под светодиоды. Кроме того, из строя обычно выходит именно газоразрядная трубка, но не электронное устройство для её «поджига». Действующую электронику мы опять откладываем в загашник: её можно разобрать, а в умелых руках эти детали ещё послужат чему-нибудь хорошему.

Виды цоколей современных ламп

Цоколь - это резьбовая система для быстрого соединения и фиксации источника света и патрона, подачи питания источнику от электросети и обеспечения герметичности вакуумной колбы. Маркировка цоколей расшифровывается следующим образом:

  1. Первая буква маркировки обозначает тип цоколя:
    • B - со штифтом;
    • Е - с резьбой (разработан ещё в 1909 году Эдисоном);
    • F - с одним штырём;
    • G - с двумя штырями;
    • H - для ксенона;
    • K и R - соответственно с кабельным и утопленным контактом;
    • P - фокусирующий цоколь (для прожекторов и фонарей);
    • S - софитный;
    • T - телефонный;
    • W - с контактными вводами в стекле колбы.
  2. Вторая буква U, A или V показывает, в каких лампах применяется цоколь: в энергосберегающих, автомобильных или с коническим концом.
  3. Следующие за буквами цифры обозначают диаметр цоколя в миллиметрах.

Самым распространённым цоколем с советских времён считается E27 - резьбовой цоколь диаметром 27 мм на напряжение 220 В.

Создание светодиодной лампы E27 из энергосберегающей с применением готового драйвера

Для самостоятельного изготовления светодиодной лампы нам понадобятся:

  1. Вышедшая из строя лампа КЛЛ.
  2. Пассатижи.
  3. Паяльник.
  4. Припой.
  5. Картон.
  6. Голова на плечах.
  7. Умелые руки.

Мы будем переделывать под светодиодную неисправную КЛЛ марки «Космос».

Пошаговая инструкция изготовления светодиодной лампы

  1. Находим неисправную энергосберегающую лампу, которая давно лежит у нас «на всякий случай». Наша лампа имеет мощность 20 Вт. Пока главный интересующий нас компонент - цоколь.
  2. Аккуратно разбираем старую лампу и удаляем из неё все, кроме цоколя и идущих от него проводов, с которыми мы потом соединим пайкой готовый драйвер. Лампа собрана с помощью выступающих над корпусом защёлок. Нужно разглядеть их и чем-нибудь поддеть. Иногда цоколь крепится к корпусу сложнее - кернением точечных углублений по окружности. Тут придётся высверлить точки кернения или аккуратно пропилить их ножовкой. Один питающий провод припаян к центральному контакту цоколя, второй - к резьбе. Оба они очень короткие. Трубки при этих манипуляциях могут лопнуть, поэтому надо действовать осторожно.
  3. Очищаем цоколь и обезжириваем его ацетоном или спиртом. Повышенное внимание стоит уделить отверстию, которое тоже тщательно очищаем от лишнего припоя. Это нужно для дальнейшей пайки в цоколе.
  4. Крышечка цоколя имеет шесть отверстий - в них крепились газоразрядные трубки. Используем эти дырки для наших светодиодов. Подложим под верхнюю часть вырезанный маникюрными ножницами круг такого же диаметра из подходящего кусочка пластика. Сгодится и плотный картон. Он и зафиксирует контакты светодиодов.
  5. У нас имеются многокристальные светодиоды HK6 (напряжение 3,3 В, мощность 0,33 Вт, ток 100-120 мА). Каждый диод собран из шести кристаллов (соединённых параллельно), поэтому светит ярко, хотя мощным и не называется. Учитывая мощность этих светодиодов, соединяем их по три штуки параллельно.

    Каждый светодиод светит довольно ярко сам по себе, поэтому шесть штук в составе лампы обеспечат хорошую силу света

  6. Обе цепочки соединяем последовательно.

    Две цепочки из трёх параллельно включённых светодиодов каждая соединяются последовательно

  7. В результате получаем довольно красивую конструкцию.

  8. Простой готовый драйвер можно взять из сломанной светодиодной лампы. Сейчас, чтобы подключить шесть белых одноваттных светодиодов, мы используем такой драйвер на 220 вольт, например, RLD2–1.

    Драйвер подключается к светодиодам по параллельной схеме

  9. Вставляем драйвер в цоколь. Ещё один вырезанный круг пластика или картона помещаем между платой и драйвером, чтобы избежать замыкания между контактами светодиодов и деталями драйвера. Лампа не нагревается, поэтому прокладка годится любая.
  10. Собираем нашу лампу и проверяем, работает ли она.

Мы создали источник с силой света примерно 150-200 лм и мощностью около 3 Вт, аналогичный 30-ваттной лампе накаливания. Но из-за того, что наша лампа имеет белый цвет свечения, она визуально выглядит ярче. Освещаемый ею участок комнаты можно увеличить, подогнув светодиодные выводы. К тому же мы получили замечательный бонус: трехваттную лампу можно даже не выключать - счётчик её практически не «видит».

Создание светодиодной лампы с применением самодельного драйвера

Гораздо интереснее не применять готовый драйвер, а сделать его самостоятельно. Конечно, если вы хорошо владеете паяльником и имеете базовые навыки чтения электрических схем.

Мы рассмотрим травление платы после рисования на ней схемы вручную. И, конечно, всем будет интересно возиться с химическими реакциями, применяя доступные химикалии. Как в детстве.

Нам понадобятся:

  1. Кусок фольгированного медью с двух сторон стеклотекстолита.
  2. Элементы нашей будущей лампы согласно сгенерированной схеме: резисторы, конденсатор, светодиоды.
  3. Дрель или мини-дрель для сверления стеклотекстолита.
  4. Пассатижи.
  5. Паяльник.
  6. Припой и канифоль.
  7. Лак для ногтей или канцелярский корректирующий карандаш.
  8. Поваренная соль, медный купорос или раствор хлорида железа.
  9. Голова на плечах.
  10. Умелые руки.
  11. Аккуратность и внимательность.

Текстолит используется в случаях, когда нужны электроизоляционные свойства. Это многослойный пластик, слои которого состоят из ткани (в зависимости от вида волокон тканевого слоя бывают базальттекстолиты, углеродотекстолиты и прочие) и связующего вещества (полиэфирная смола, бакелит и прочее):

  • стеклотекстолит - это стеклоткань, пропитанная эпоксидной смолой. Он отличается высоким удельным сопротивлением и термостойкостью - от 140 до 1800 o C;
  • фольгированный стеклотекстолит - это материал, покрытый слоем гальванической медной фольги толщиной 35-50 мкм. Он используется для изготовления печатных плат. Толщина композита - от 0,5 до 3 мм, площадь листа - до 1 м 2 .

Схема драйвера для светодиодной лампы

Драйвер для LED лампы вполне можно сделать самостоятельно, например, опираясь на простейшую схему, которую мы рассмотрели в начале статьи. Туда необходимо лишь добавить несколько деталей:

  1. Резистор R3, чтобы разряжать конденсатор при отключении питания.
  2. Пару стабилитронов VD2 и VD3 для шунтирования конденсатора, если сгорит или оборвётся светодиодная цепь.

Если мы правильно подберём напряжение стабилизации, то сможем ограничиться и одним стабилитроном. Если же мы заложим напряжение больше 220 В, а под него выберем конденсатор, то обойдёмся вообще без дополнительных деталей. Но драйвер получится по размеру больше, и плата может не уместиться в цоколе.

Эту схему мы создали, чтобы сделать лампу из 20 светодиодов. Если их больше или меньше, нужно подобрать другую ёмкость конденсатора С1, чтобы через светодиоды по-прежнему проходил ток 20 мА.

Драйвер будет понижать напряжение сети и пытаться сгладить скачки напряжения. Через резистор и токоограничивающий конденсатор напряжение сети подаётся на мостовой выпрямитель на диодах. Через другой резистор подаётся постоянное напряжение на блок светодиодов, и они начинают светить. Пульсации этого выпрямленного напряжения сглаживаются конденсатором, а когда лампа от сети отключается, то первый конденсатор разряжается ещё одним резистором.

Будет удобнее, если конструкция драйвера смонтирована с помощью печатной платы, а не представляет собой некий ком в воздухе из проводов и деталей. Плату вполне можно сделать самому.

Пошаговая инструкция по изготовлению светодиодной лампы с самодельным драйвером

  1. Генерируем с помощью компьютерной программы собственный рисунок для травления платы согласно задуманной конструкции драйвера. Очень удобна и популярна среди радиолюбителей бесплатная компьютерная программа Sprint Layout, позволяющая самостоятельно проектировать печатные платы невысокой сложности и получать изображение их разводки. Есть ещё одна прекрасная отечественная программа - DipTrace, рисующая не только платы, но и принципиальные схемы.

    Бесплатная компьютерная программа Sprint Layout генерирует подробную схему травления платы для драйвера

  2. Вырезаем из стеклотекстолита круг диаметром 3 см. Это и будет наша плата.
  3. Выбираем способ переноса схемы на плату. Все способы - страшно интересные. Можно:
    • нарисовать схему прямо на куске стеклотекстолита канцелярским корректирующим карандашом или специальным маркером для печатных плат, который продаётся в магазине радиодеталей. Тут есть тонкость: лишь этот маркер позволяет рисовать дорожки меньше или равные 1 мм. В остальных случаях ширина дорожки, как ни старайся, не будет меньше 2 мм. Да и медные пятачки для пайки выйдут неаккуратными. Поэтому нужно после нанесения рисунка подкорректировать его бритвой или скальпелем;
    • распечатать схему на струйном принтере на фотобумаге и припарить распечатку утюгом к стеклотекстолиту. Элементы схемы покроются краской;
    • нарисовать схему лаком для ногтей, который точно есть в любом доме, где живёт женщина. Это самый простой способ, им и воспользуемся. Старательно и аккуратно кисточкой от флакона рисуем дорожки на плате. Ждём, пока лак хорошо высохнет.
  4. Разводим раствор: 1 столовую ложку медного купороса и 2 столовые ложки поваренной соли размешиваем в кипятке. Медный купорос используется в сельском хозяйстве, поэтому его можно купить в садоводческих и строительных магазинах.
  5. Опускаем плату в раствор на полчаса. В результате останутся только медные дорожки, которые мы защитили лаком, остальная медь исчезнет во время реакции.
  6. Ацетоном удаляем оставшийся лак со стеклотекстолита. Сразу же нужно залудить (покрыть припоем с помощью паяльника) края платы и места контактов, чтобы медь стремительно не окислилась.

    Места контактов пропаиваются слоем припоя, смешанного с канифолью, чтобы защитить медные дорожки от окисления

  7. Согласно схеме делаем отверстия дрелью.
  8. Пропаиваем на плате светодиоды и все детали самодельного драйвера со стороны печатных дорожек.
  9. Устанавливаем плату в корпус лампы.

    После всех проведённых операций должна получиться светодиодная лампа, эквивалентная 100-ваттной лампе накаливания

Замечания по безопасности

  1. Хотя самостоятельная сборка светодиодной лампы - не очень сложный процесс, к нему не стоит даже приступать, если вы не обладаете хотя бы начальными электротехническими знаниями. Иначе собранная вами лампа при внутреннем коротком замыкании может навредить всей электрической сети вашего дома, включая дорогие электроприборы. Специфика светодиодной техники в том, что если некоторые элементы её схемы подключить неправильно, то возможен даже взрыв. Так что надо быть предельно аккуратным.
  2. Обычно светильники используются при напряжении 220 В переменного тока. Но конструкции, рассчитанные на напряжение в 12 В, подключать к обычной сети ни в коем случае нельзя, и вы должны об этом всегда помнить.
  3. В процессе изготовления самодельной светодиодной лампы компоненты светильника часто не могут быть сразу полностью изолированы от питающей сети 220 В. Поэтому вас может серьёзно ударить током. Даже если конструкция подключена к сети через блок питания, то вполне возможно, что она имеет простую схему без трансформатора и гальванической развязки. Поэтому к конструкции нельзя прикасаться руками, пока конденсаторы не разрядятся.
  4. Если лампа не заработала, то в большинстве случаев виновата некачественная спайка деталей. Вы были невнимательны или поспешно действовали паяльником. Но не отчаивайтесь. Пробуйте дальше!

Видео: учимся паять

Странное дело: в наш век, когда в магазинах есть абсолютно всё, как правило, недорогое и весьма разнообразное, после двадцатилетней эйфории люди всё чаще возвращаются к тому, чтобы делать домашние вещи своими руками. Немыслимо расцвело рукоделие, занятия столярным и слесарным мастерством. И в этот ряд уверенно возвращается простая прикладная электротехника.

Несмотря на высокую стоимость, потребление электроэнергии полупроводниковыми светильниками (LED) намного меньше, чем у ламп накаливания, а срок службы в 5 раз больше. Схема светодиодной лампы работает при подаче 220 вольт, когда входной сигнал, вызывающий свечение, преобразуется до рабочей величины с помощью драйвера.

Светодиодные светильники на 220 В

Каким бы ни было напряжение питания, на один светодиод подается постоянное напряжение 1,8-4 В.

Типы светодиодов

Светодиод – это полупроводниковый кристалл из нескольких слоев, преобразующий электричество в видимый свет. При изменении его состава получается излучение определенного цвета. Светодиод делается на основе чипа – кристалла с площадкой для подключения проводников питания.

Чтобы воспроизвести белый свет, «синий» чип покрывается желтым люминофором. При излучении кристалла люминофор испускает собственное. Смешивание желтого и синего света образует белый.

Разные способы сборки чипов позволяют создавать 4 основных типа светодиодов:

  1. DIP – состоит из кристалла с расположенной сверху линзой и присоединенными двумя проводниками. Он наиболее распространен и используется для подсветки, в световых украшениях и табло.
  2. «Пиранья» – похожая конструкция, но с четырьмя выводами, что делает ее более надежной для монтажа и улучшает отвод выделяющегося тепла. Большей частью применяется в автомобильной промышленности.
  3. SMD-светодиод – размещается на поверхности, за счет чего удается уменьшить габариты, улучшить теплоотвод и обеспечить множество вариантов исполнения. Используется в любых источниках света.
  4. СОВ-технология, где чип впаивается в плату. За счет этого контакт лучше защищен от окисления и перегрева, а также значительно повышается интенсивность свечения. Если светодиод перегорает, его надо полностью менять, поскольку ремонт своими руками с заменой отдельных чипов не возможен.

Недостатком светодиода является его маленький размер. Чтобы создать большое красочное световое изображение, требуется много источников, объединенных в группы. Кроме того, кристалл со временем стареет, и яркость ламп постепенно падает. У качественных моделей процесс износа протекает очень медленно.

Устройство LED-лампы

В состав лампы входят:

  • корпус;
  • цоколь;
  • рассеиватель;
  • радиатор;
  • блок светодиодов LED;
  • бестрансформаторный драйвер.

Устройство LED-лампы на 220 вольт

На рисунке изображена современная LED-лампа по технологии СОВ. Светодиод выполнен как одно целое, с множеством кристаллов. Для него не требуется распайка многочисленных контактов. Достаточно присоединить всего одну пару. Когда делается ремонт светильника с перегоревшим светодиодом, его меняют целиком.

По форме лампы бывают круглыми, цилиндрическими и прочими. Подключение к сети питания производится через резьбовые или штырьковые цоколи.

Под общее освещение выбираются светильники с 2700К, 3500К и 5000К. Градации спектра могут быть любыми. Их часто используют для освещения реклам и в декоративных целях.

Простейшая схема драйвера для питания лампы от сети изображена на рисунке ниже. Количество деталей здесь минимальное, за счет наличия одного или двух гасящих резисторов R1, R2 и встречно-параллельного включения светодиодов HL1, HL2. Так они защищают друг друга от обратного напряжения. При этом частота мерцания лампы увеличивается до 100 Гц.

Простейшая схема подключения LED-лампы в сеть 220 вольт

Напряжение питания 220 вольт поступает через ограничительный конденсатор С1 на выпрямительный мост, а после – на лампу. Один из светодиодов можно заменить на обычный выпрямительный, но при этом мерцание изменится до 25 Гц, что плохо повлияет на зрение.

На рисунке ниже изображена классическая схема источника питания LED-лампы. Он применяется во многих моделях, и его можно извлекать, чтобы производить ремонт своими руками.

Классическая схема включения LED-лампы в сеть 220 В

На электролитическом конденсаторе выпрямленное напряжение сглаживается, что устраняет мерцание с частотой 100 Гц. Резистор R1 разряжает конденсатор при отключении питания.

своими руками

В простой LED-лампе с отдельными светодиодами можно сделать ремонт с заменой неисправных элементов. Она легко разбирается, если аккуратно отделить от стеклянного корпуса цоколь. Внутри располагаются светодиоды. У лампы MR 16 их 27 штук. Для доступа к печатной плате, на которой они размещены, надо удалить защитное стекло, поддев его отверткой. Порой эту операцию сделать довольно трудно.

Лампа светодиодная на 220 вольт

Прогоревшие светодиоды сразу заменяются. Остальные следует прозвонить тестером или подать на каждый напряжение 1,5 В. Исправные должны загораться, а остальные подлежат замене.

Изготовитель рассчитывает лампы так, чтобы рабочий ток светодиодов был как можно выше. Это значительно снижает их ресурс, но «вечные» устройства продавать невыгодно. Поэтому последовательно к светодиодам можно подключить ограничивающий резистор.

Если светильники моргают, причиной может быть выход из строя конденсатора С1. Его следует заменить на другой, с номинальным напряжением 400 В.

Заново светильники на светодиодах делают редко. Лампу проще изготовить из неисправной. Фактически получается, что ремонт и изготовление нового изделия – это один процесс. Для этого LED-лампу разбирают и восстанавливают перегоревшие светодиоды и радиодетали драйвера. В продаже часто бывают оригинальные светильники с нестандартными лампами, которым в дальнейшем трудно найти замену. Простой драйвер можно взять из неисправной лампы, а светодиоды – из старого фонарика.

Схема драйвера собирается по классическому образцу, рассмотренному выше. Только к ней добавляется резистор R3 для разрядки конденсатора С2 при отключении и пара стабилитронов VD2,VD3 для его шунтирования на случай обрыва цепи светодиодов. Можно обойтись одним стабилитроном, если правильно подобрать напряжение стабилизации. Если конденсатор выбрать под напряжение больше 220 В, можно обойтись без дополнительных деталей. Но в этом случае его размеры увеличатся и после того, как будет сделан ремонт, плата с деталями может не поместиться в цоколь.

Драйвер LED-лампы

Схема драйвера приведена для лампы из 20 светодиодов. Если их количество будет другим, необходимо подобрать такую величину емкости конденсатора С1, чтобы через них проходил ток 20 мА.

Схема питания LED-лампы является чаще всего бестрансформаторной, и следует соблюдать осторожность при монтаже своими руками на металлическом светильнике, чтобы не было замыкания фазы или нуля на корпус.

Конденсаторы подбираются по таблице, в зависимости от количества светодиодов. Их можно закрепить на алюминиевой пластине в количестве 20-30 шт. Для этого в ней сверлятся отверстия, и на термоклей устанавливаются светодиоды. Их пайка производится последовательно. Все детали можно разместить на печатной плате из стеклотекстолита. Они располагаются со стороны, где отсутствуют печатные дорожки, за исключением светодиодов. Последние – крепятся пайкой выводов на плате. Их длина составляет около 5 мм. Затем устройство собирается в светильнике.

Для многих многоквартирных домов актуальна проблема освещения лестничных площадок: хорошую лампу туда ставить жалко, а дешевые быстро выходят из строя.

С другой стороны качество освещения в данном случае не является критичным, так как люди находятся там очень недолго, то вполне можно поставить туда лапочки с повышенными пульсациями. А раз так, то схема светодиодной лампы на 220 В получиться совсем простой:

Список номиналов:

  • C1 – значение емкости по таблице, 275 В или больше
  • C2 – 100 мкФ (напряжение должно быть больше чем падает на диодах
  • R1 – 100 Ом
  • R2 – 1 MОм (для разряда конденсатора C1)
  • VD1 .. VD4 – 1N4007

Я уже приводил схему подключение светодиодной ленты к сети 220В так вот её можно упростить выкинуть стабилизатор тока. Упрощенная схема не будет работать в широком диапазоне напряжений, это плата за упрощение.

Конденсатор C1 является тем компонентом, который ограничивает ток. И выбор его значения очень важен, его величина зависит от напряжения питания, напряжения на последовательно включенных светодиодах и требуемого тока через светодиоды.

количество светодиодов последовательно, шт 1 10 20 30 50 70
напряжение на сборке из светодиодов, В 3,5 35 70 105 165 230
ток через светодиоды, мА (С1=1000нФ) 64 57 49 42 32 20
ток через светодиоды, мА (С1=680нФ) 44 39 34 29 22 14
ток через светодиоды, мА (С1=470нФ) 30 27 24 20 15
ток через светодиоды, мА (С1=330нФ) 21 19 17 14
ток через светодиоды, мА (С1=220нФ) 14 13 11

Для 1 светодиода в сборке фильтрующий конденсатор C2 следует увеличить до 1000мкФ, а для 10 светодиодов, до 470мкФ.

По таблице можно понять, что для получения максимальной мощности (чуть более 4 Вт) нужен конденсатор на 1мкФ и 70 последовательно включенных светодиодов на 20мА. Для более мощных источников света лучше подойдет схема светодиодной лампы на 220 в использующая широтноимпульсную модуляцию для преобразования и стабилизации тока через светодиоды.

Схемы на основе широтноимпульсной более сложные, но зато обладают преимуществами: им не требуется большой ограничивающий конденсатор, эти схемы обладают высоким КПД и широким диапазоном работы.

Я заказал несколько светодиодных светильников в Китае. В основе преобразователей этих ламп лежат микросхемы драйверов разработанных в том же Китае, конечно качество работы этих схем ещё не дотягивает до западных стандартов, но вот стоимость более чем демократичная.


Итак, конкретно в последних светодиодных лампах была установлена микросхема WS3413D7P, являющаяся светодиодным драйвером с активным корректором коэффициента мощности.


Что же мы видим на схеме? Все тот же диодный мост VD1 — VD4, сглаживающий конденсатор С1. Остальные же компоненты работают нужны для работы микросхемы D1. Резистор R1 нужен для питания самой микросхемы в начальный момент времени, а после запуска микросхема начинает питаться со своего выхода через цепочку R5, VD5. Конденсатор С2 фильтрует питания собственных нужд. Конденсатор С3 служит для задания частоты преобразования. Резистор R2 нужен для измерения тока через светодиоды. Делитель на резисторах R3, R4 позволяет микросхеме получать информацию о напряжении на светодиодной сборке. Катушка индуктивности L1 и конденсатор C4 нужны для преобразования импульсной энергии в постоянную.

Существует куча других разновидностей микросхем, но основных типов высоковольтных драйверов светодиодов всего три: на основе емкостного гасящего сопротивления, активный гасящий стабилизатор тока и импульсный стабилизатор тока.

Навигация по записям

14 thoughts on “Схема светодиодной лампы на 220 в

  1. Игорь

    Даже с «выброшенным» стабилизатором, светодиодная лампочка для подъезда получается слишком дорогой. Там лучше вкрутить обычную лампочку «Ильича Эдисона» с диодом, который монтируется в слегка модернизированный патрон.

    1. Валерий

      Не в патрон, в выключатель, там больше места.

  2. Greg

    Не знаю, что слишком дорогого увидел здесь Игорь, но, уж если экономить по полной, то можно выкинуть сопротивления и мост. Останутся: С1, как реактивное сопротивление, один диод для выпрямления переменки и С2 (емкость увеличить в 2-3 раза) для сглаживания пульсаций. Затраты на питание и замену ламп накаливания гораздо выше, чем, даже первоначальный вариант схемы. Очень уж они неэкономичны, причем, во всех ракурсах. От них и избавляются поэтому везде, где только можно. А в подъездах — это архиважно и архинужно, как говаривал Ильич.

  3. admin Автор записи

    У лампы накаливая маловат ресурс, на коробке пишут 1000ч, при круглосуточной работе это 42 дня. В лучшем случае лампочка прослужит несколько месяцев.
    Питание лампы однополупериодным напряжением должно значительно увеличить ресурс (якобы до 100 раз), вот только светоотдача упадет больше чем в два раза. И лампочка будет мерцать с частотой 50Гц.
    Чтобы вернуть частоту к 100Гц, достаточно включить две одинаковых лампочки последовательно — и ресурс возрастет и частота не снизиться.

  4. олександр

    В первой схеме конденсатор С1 надо брать на большее допустимое напряжение в сети 220 в это действующее напряжение Максимальное 220*1,42= примерно 320 в к тому же как правило На конденсаторе указывается на постоянное напряжение а в сети 50 герц. Я рекомендую брать не меньше 450 В. Один диод как пишет Greg не пойдет так на светодиоды или выпрямительный диод будет действовать обратное напряжение.Я рекомендую Выкинуть диодный мост и С2 параллейно светодиодам в обратной полярности поставить диол один период пойдет через светодиод другой через силовой диод. Светодиод можно взять из не исправных фонариков.

  5. Greg

    Ну, обратное напряжение светодиоды должны выдержать, но идея хороша. Зачем терять один период? С2 — выбрасываем, да, а вместо предложенного Олександром силового, ставим еще один световой — пусть моргают попеременно, усиливая общий световой поток и защищая друг дружку от обратного напряжения. А учитывая, что сверхъярких светодиодов, в некоторые фонарики тулят штук по 20, наковырять можно много. Можно и целиком взять, у многих ручных фонарей — ручка выполнена в виде удлиненной лампочки кругового рассеивания.

  6. олександр

    Данную схему можно не только в подъезде как предполагает (Игорь) но где угодно, например освещение приусадебного участка по схеме Greg через понижающий трансформатор для безопасности и две группы светодиодов включенных параллейно и в противоположной полярности.или освещение кессона, душа летнего.

  7. Анатолий

    Я часто видел в подъездах мерцающие лампочки накаливания, где использовался «хитрый» патрон с одним диодом. По моему самое то для подъезда, экономия энергии и непрезентабельный вид. Вот для дома схема №1 вполне подойдёт, скопирую её себе.

  8. Николай

    разобрал «замолчавшую» светодиодную лампу на 11 ватт(100 эквивалента к накаливанию). То что автор называет драйвером, обычный инвертор, схема которого вошла в быт повсеместно, от лампочек до компьютеров и сварочных аппаратов. Так вот на моей лампе стоит 20 диодных светоизлучающих элементов. Исследуя их я пришел к выводу, что они включены как елочная гирлянда — последовательно. Обнаружить неисправный диод не составило труда. Припаяв перемычку из резистроа порядка 50 ом, лампа восстановилась. Так что светоизлучатели работают не при 9.8 иольтах а на всё напряжение выдаваемое инвертором. То есть 220 вольт.
    Дале — у меня есть фонарь ЭРА летучая мышь, с 6 вольтовым АКБ и люминесцентной лампой. Эта лампа светит очень гумозно при своих 7 ваттах. А АКБ хватает на 4 часа. Что я сделал — выпаял из схемы «драйвера» диодный мост и плату со светоизлучателями. В точки пайки проводов от инвертора обозначенные + и — , впаял этот мост соблюдая полярность. На вход моста подал переменное напряжение которое вырабатывал штатный генератор «Эры». Лампа заработала как надо. Светоотдача осталась той же как и от сети 220 вольт. Поскольку холостой ход генератора обеспечивал это напряжение на светоизлучателях.
    Как то вот так.



Просмотров