Развитие сенсорных технологий

Сенсорные технологии May 27th, 2011

Удобнее кнопки и колеса

Интересно, догадывались ли Генри Эдвард Робертс и Мартин Купер, создавая первые в мире персональный компьютер и мобильный телефон, о том, что п ройдет каких-то полвека и уже привычное использование коммуникативных устройств - клавиатуры, мышки и джостика - отойдут на второй план?

Сегодня появился совершено иной способ взаимодействия человека и стационарного или портативного компьютера - это сенсорные технологии , которые также нашли активное применение в сенсорных информационных киосках самообслуживания и платежных терминалах и значительно упростили процесс «общения» потребителя с высокотехнологичным оборудованием. Современное сенсорное оборудование стало настолько притягательным и интуитивно понятным, что с ним могут работать даже неподготовленные пользователи.

Сенсорные технологии основаны на воздействии четырех базовых видов волн: резистивных, поверхностно-акустических, поверхностно-емкостных и инфракрасных и позволяют человеку принимать непосредственное (контактное) участие в запросе информации, осуществлении платежей и заказов и.т.д.

Как показывает практика, нашим клиентам важно знать о сенсорных технологиях больше, поэтому на нашем сайте мы публикуем описание базовых сенсорных технологий, которые легли в основу разработки сенсорных экранов :

Резистивная сенсорная технология.

Принцип работы резистивного экрана основан на действии резистивных волн. Такой экран имеет многослойную структуру и состоит из стеклянной панели и гибкой пластиковой мембраны, где н а панель и мембрану нанесено резистивное покрытие.

Пространство между стеклом и мембраной заполнено микроизоляторами, которые равномерно распределены по активной области экрана и надёжно изолируют проводящие поверхности. Во время нажатия на мембрану замыкаются резистивные покрытия и специальный контроллер регистрирует изменение сопротивления между электродами, преобразуя это изменение в координаты.

Различают четырех- и пятипроводные резистивные экраны. На мембране пятипроводного

резистивное покрытие заменено проводящим. Это позволяет сохранить работоспособность резистивного экрана даже при порезах на мембране, такой экран считается наиболее надежным.

Резистивные сенсорные экраны зарекомендовали себя в сфере обслуживания в составе POS-терминалов, промышленности, медицине, транспорте.Они обладают максимальной стойкостью к загрязнению, отличаются надежностью и долговечностью. Экран выдерживает 35 миллионов прикосновений к одной точке.

Поверхностно-аккустическая сенсорная технология (ПАВ).

Такие экраны работают на основе технологии поверхностно-акустических волн и представляют собой стеклянную панель, что позволяет получить максимально качественное изображение на сенсорном экране.

Такие экраны построены на принципе использования миниатюрных пьезоэлектрических излучателей звука, не слышимых человеком, установленных в трех углах экрана. Этот сигнал преобразуется в ультразвуковую акустическую волну, направляемую вдоль поверхности экрана, а сам экран представляется для программы управления сенсорными датчиками в виде цифровой матрицы, каждое значение которой соответствует определенной точке экранной поверхности. Специальные отражатели распространяют акустическую волну по всей поверхности экрана. Прикосновение к экрану меняет картину распространения акустических колебаний, что регистрируется датчиками. По изменению характера колебаний можно вычислить координаты возмущений и силу нажатия.

Сенсорный экран, основанный на технологии поверхностно-акустических волн обеспечивает максимальную прозрачность и высокое качество изображения, работоспобен даже при наличии царапин, фиксирует точные координаты и силу прикосновения, имеет антибликовое покрытие. Сенсорный экран может реагирует на прикосновение пальца, руки в перчатке и стилоса.

Инфракрасная сенсорная технология.

Инфракрасные сенсорные панели работают по двум очень сложным методикам.

Первая методика основана на использовании изменения выделенного тепла на поверхности панели. Этот метод не очень практичен, так как требует, чтобы руки были всегда теплыми.

Другая методика подразумевает расположение инфракрасных сенсоров по всему периметру панели, которые улавливают прерывание в потоке световых лучей над поверхностью экрана при прикосновении. Если один из инфракрасных лучей перекрывается попавшим в зону действия лучей посторонним предметом, луч перестает поступать на приемный элемент, что тут же фиксируется микропроцессорным контроллером. Таким образом вычисляется координата касания. Отметим, что не имеет значения, какой из предметов (палец, авторучка, перчатка) помещен в рабочее пространство инфракрасному сенсорного экрана.

Считается, что инфракрасные сенсорные панели имеют самую прочную поверхность, и чаще всего используются в образовательных учреждениях (в качестве интерактивных панелей большого размера), медицинских , правительственных и государственных организациях , игровых автоматах, а также в военных целях.

Емкостная (электростатическая) или поверхностно-емкистная технология.

Существует два варианта емкостных экранов: поверхностно-емкостные и проекционно-емкостные. В обоих случаях управление осуществляется не нажатием, а касанием экрана. В основе технологий лежит способность человека проводить электрический ток.

Емкостный (электростатический) сенсорный экран обладает некоторым электрическим зарядом. Прикасаясь к сенсорному экрану, человек несколько меняет картину заряженности, перенимая часть заряда к точке нажатия. Датчики экрана расположены по всем четырем углам и следят за течением заряда на экране, определяя координаты прикосновения.

Ёмкостные экраны также отличаются надёжностью и высокой степенью прозрачности и долговечностью - возможность до миллиарда нажатий в одно и то же место. Однако, как правило, в работе с таким экраном нельзя пользоваться вспомогательным предметом (стилусом, перчаткой и т.п..) - только пальцем. Хотя уже существуют такие ёмкостные экраны, где возможна работа со специально изготовленного под данный вид экрана стилусом.

Емкостные сенсорные мониторы имеют хорошую прозрачность, долговечны, поэтому интенсивно используются в многолюдных местах: торгово-развлекательных центрах, супермаркетах, авиа- и ж/д кассах, на улице и т.д.

Существует также и другие новейшие сенсорные технологии, например, multi-touch с функцией сенсорных систем ввода, осуществляющая одновременное определение координат двух и более точек касания.

В последнее время начали активно разрабатываться и применяться схемы бесконтактной работы с сенсорным экраном. Современные датчики сенсорных экранов реагируют на тепло, движение рук, и совсем необязательно прикасаться к экрану. Такая система датчиков фиксирует движение пальца на расстоянии до двух сантиметров над поверхностью экрана.

Применение и развитие сенсорных технологий сегодня дает новый импульс развитию медицины, автомобилестроения, образования, банковской сферы, технологии «умный дом», преобразуются игры и развлечения, сервис и торговля и многое другое.

20.07.2016 14.10.2016 by Почемучка

История создания сенсорного экрана.

Сегодня сенсорным дисплеем, а вернее экраном с возможностью введения информации посредством касания, никого не удивишь. Практически все современные смартфоны, планшетные ПК, некоторые электронные книги и другие современные гаджеты оснащены подобными устройствами. Какова же история этого чудесного устройства ввода информации?

Считается, что родителем первого в мире сенсорного устройства является американский преподаватель университета штата Кентукки, Сэмуэль Херст. В 1970 году он столкнулся с проблемой считывания информации с огромного количества лент самописцев. Его идея автоматизации этого процесса стала толчком к созданию первой в мире компании по производству сенсорных экранов – Elotouch. Первая разработка Херста и его единомышленников носила название Elograph. Она увидела свет в 1971 году и использовала четырех проводной резистивный метод определения координат точки касания.

Первой же компьютеризированным устройством с сенсорным дисплеем была система PLATO IV, появившаяся на свет в 1972 году благодаря исследованиям, проходившим в рамках компьютерного обучения в США. Она имела сенсорную панель, состоящую из 256 блоков (16×16), и работающую при помощи сетки инфракрасных лучей.

В 1974 году снова дал о себе знать Сэмюэль Херст. Образованная им компания Elographics выпустила прозрачную сенсорную панель, а еще через три года в 1977 ими была разработана пяти проводная резистивная панель. Спустя несколько лет компания объединяется с крупнейшим производителем электроники Siemens и в 1982 году они совместно выпускают первый в мире телевизор, оборудованный сенсорным экраном.

В 1983 году производитель компьютерной техники компания Hewlett-Packard выпускает компьютер HP-150, оборудованный сенсорным дисплеем, работающим по принципу инфракрасной сетки.

Первым мобильным телефоном с сенсорным устройством для ввода информации была модель Alcatel One Touch COM, выпущенная в 1998 году. Именно она стала прообразом современных смартфонов, хотя и имела по сегодняшним меркам весьма скромные возможности – небольшой монохромный дисплей. Еще одной попыткой смартфона с сенсорным экраном стала модель Ericsson R380. Она также имела монохромный дисплей и была весьма ограничена в своих возможностях.

Сенсорный экран в современном виде предстал в 2002 году в модели Qtek 1010/02 XDA, выпущенной компанией HTC. Это был полноцветный дисплей с достаточно хорошей разрешающей способностью, поддерживающий 4096 цветов. Он использовал резистивную технологию определения координат касания. На более высокий уровень сенсорные экраны вывела компания Apple. Именно благодаря ее IPhone, устройства с сенсорными дисплеями получили невероятную популярность, а их разработка Multitouch (определение касания двумя пальцами) существенно упрощала ввод информации.

Однако появление сенсорных экранов стало не только удобным новшеством, но и повлекло за собой некоторые неудобства. Электронные устройства, оснащенные сенсором, более чувствительны к неаккуратному обращению, поэтому и ломаются чаще. Ломаются даже экраны в Iphone. Благо, что заменить их может даже неквалифицированный специалист.

Как устроен сенсорный экран.

Такая диковинка как сенсорный экран – дисплей с возможностью ввода информации простым нажатием на его поверхность при помощи специального стилуса или просто пальца, давно уже перестал вызывать удивление у пользователей современных электронных гаджетов. Давайте попробуем разобраться, как же он работает.

На самом деле видов сенсорных экранов существует достаточно большое количество. Друг от друга они отличаются принципами, заложенными в их работе. Сейчас на рынке современной высокотехнологичной электроники используются в основном резистивные и емкостные сенсоры. Однако существуют также матричные, проекционно-емкостные, использующие поверхностно-акустические волны, инфракрасные и оптические. Особенность двух первых, самых распространенных в том, что сам сенсор отделен от дисплея, поэтому при поломке его с легкостью может заменить даже начинающий электромастер. Вам останется лишь купить тачскрин для сотового или любого другого электронного устройства.

Резистивный сенсорный экран состоит из гибкой пластиковой мембраны, на которую собственно мы и нажимаем пальцем, и стеклянной панели. На внутренние поверхности двух панелей нанесен резистивный материал, по сути, являющийся проводником. Между мембраной и стеклом равномерно расположен микроизолятор. Когда мы нажимаем на одну из областей сенсора, в этом месте замыкаются проводящие слои мембраны и стеклянной панели и происходит электрический контакт. Электронная схема-контроллер сенсора преобразует сигнал от нажатия в конкретные координаты на области дисплея и передает их в схему управления самим электронным устройством. Определение координат, а вернее ее алгоритм, очень сложен и основан на последовательном вычислении сначала вертикальной, а потом горизонтальной координаты контакта.

Резистивные сенсорные экраны достаточно надежны, поскольку нормально функционируют даже при загрязнении активной верхней панели. К тому же они, ввиду своей простоты более дешевы в производстве. Однако у них есть и недостатки. Одним из основных является низкая светопропускная способность сенсора. То есть поскольку сенсор наклеен на дисплей, изображение получается не таким ярким и контрастным.

Емкостный сенсорный экран. В основу его работы заложен тот факт, что любой предмет, имеющий электрическую емкость, в данном случае палец пользователя, проводит переменный электрический ток. Сам сенсор представляет собой стеклянную панель, покрытую прозрачным резистивным веществом, которое образует проводящий слой. На этот слой при помощи электродов подается переменный ток. Как только палец или стилус касается одной из областей сенсора, в этом месте происходит утечка тока. Его сила зависит от того на сколько близко к краю сенсора произведен контакт. Специальный контроллер измеряет ток утечки и по его значению вычисляет координаты контакта.

Емкостный сенсор также как и резистивный не боится загрязнений, к тому же ему не страшна жидкость. Однако по сравнению с предыдущим он имеет более высокую прозрачность, что делает изображение на дисплее более четким и ярким. Недостаток емкостного сенсора происходит из его конструктивных особенностей. Дело в том, что активная часть сенсора, по сути, находится на самой поверхности, поэтому подвержена износу и повреждениям.

Теперь поговорим о принципах работы менее популярных на сегодняшний день сенсоров.

Матричные сенсоры работают по принципу резистивных, однако отличаются от первых максимально упрощенной конструкцией. На мембрану наносятся вертикальные проводящие полосы, на стекло – горизонтальные. Или наоборот. При давлении на определенную область, замыкаются две проводящие полосы и контроллеру достаточно легко вычислить координаты контакта.

Недостаток такой технологии виден невооруженным глазом – очень низкая точность, а следовательно и невозможность обеспечить высокую дискретность сенсора. Из-за этого некоторые элементы изображения могут не совпадать с расположением полос проводника, а следовательно нажатие на эту область может либо вызвать неправильное исполнение нужной функции либо вообще не сработать. Единственным достоинством этого типа сенсоров является их дешевизна, которая собственно говоря, и выплывает из простоты. Кроме этого матричные сенсоры не прихотливы в использовании.

Проекционно-емкостные сенсорные экраны являются как бы разновидностью емкостных, однако работают немного по-другому. На внутреннюю сторону экрана наносится сетка электродов. При касании пальцем между соответствующим электродом и телом человека возникает электрическая система – эквивалент конденсатора. Контроллер сенсора подает импульс микротока и измеряет емкость образовавшегося конденсатора. В результате того что в момент касания одновременно задействованы несколько электродов, контроллеру достаточно просто вычислить точное место касания (по самой большой емкости).

Основные достоинства проекционно-емкостных сенсоров – это большая прозрачность всего дисплея (до 90 %), чрезвычайно широкий диапазон рабочих температур и долговечность. При использовании такого типа сенсора несущее стекло может достигать толщины 18 мм, что дает возможность делать ударопрочные дисплеи. К тому же сенсор устойчив к непроводящему загрязнению.

Сенсоры на поверхностно-акустических волнах – волнах, распространяющихся на поверхности твердого тела. Сенсор представляет собой стеклянную панель, по углам которой расположены пьезоэлектрические преобразователи. Суть работы такого сенсора в следующем. Пьезоэлектрические датчики генерируют и принимают акустические волны, которые распространяются между датчиками по поверхности дисплея. Если касания нет – электрический сигнал преобразуется в волны, а потом обратно в электрический сигнал. Если произошло касание часть энергии акустической волны поглотится пальцем, а следовательно не дойдет до датчика. Контроллер проанализирует полученный сигнал и посредством алгоритма вычислит место касания.

Достоинства таких сенсоров в том, что используя специальный алгоритм можно определять не только координаты касания, но и силу нажатия – дополнительная информационная составляющая. К тому же конечное устройство отображения (дисплей) имеет очень высокую прозрачность, поскольку на пути света нет полупрозрачных проводящих электродов. Однако сенсоры имеют и ряд недостатков. Во-первых, это очень сложная конструкция, а во-вторых – точности определения координат очень сильно мешают вибрации.

Инфракрасные сенсорные экраны. Принцип их работы основан на использовании координатной сетки из инфракрасных лучей (излучатели и приемники света). Примерно тоже, что и в банковских хранилищах из художественных фильмов про шпионов и грабителей. При касании в определенной точке сенсора прерывается часть лучей, а контроллер по данным от оптических приемников определяет координаты контакта.

Основной недостаток таких сенсоров – очень критичное отношение к чистоте поверхности. Любое загрязнение может привести к полной его неработоспособности. Хотя из-за простоты конструкции этот тип сенсора используется в военных целях, и даже в некоторых мобильных телефонах.

Оптические сенсорные экраны являются логическим продолжением предыдущих. Инфракрасный свет используется в качестве информационной подсветки. Если на поверхности нет сторонних предметов – свет отражается и попадает в фотоприемник. Если произошло касание – часть лучей поглощается, а контроллер определяет координаты контакта.

Недостатком технологии является сложность конструкции в виду необходимости использования дополнительного светочувствительного слоя дисплея. К достоинствам можно отнести возможность достаточно точного определения материала, с помощью которого произведено касание.

Тензометрические и сенсорные экраны DST работают по принципу деформацииповерхностного слоя. Их точность достаточно низкая, но они прекрасно выдерживают механические воздействия, поэтому применяются в банкоматах, билетных автоматах и прочих публичных электронных устройствах.

Индукционные экраны основаны на принципе формирования электромагнитного поля под верхней частью сенсора. При касании специальным пером, меняется характеристика поля, а контроллер в свою очередь вычисляет точные координаты контакта. Применяются в художественных планшетных ПК самого высокого класса, поскольку обеспечивают большую точность определения координат.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http :// www . allbest . ru /

Размещено на http :// www . allbest . ru /

Введение

Резистивная сенсорная технология

Емкостная сенсорная технология

Проекционно-емкостная сенсорная технология

Матричная сенсорная технология

ПАВ сенсорная технология

Инфракрасная сенсорная технология

Прочие технологии

Индуктивная сенсорная технология

Будущее уже сейчас

Заключение

Список используемых источников

Введение

Стремительное развитие электронных технологий, а также расширение сферы их применения требуют упрощения взаимодействия человека и машины. В этом могут помочь сенсорные экраны. Традиционными средствами ввода информации в исполняющее устройство (компьютер) являются клавиатура (кнопки) и «мышь» (трекбол). Применение этих устройств привычно при работе с офисными приложениями, графикой, изображениями, а также для быстрого ввода текста. Однако в ряде случаев применение такого оборудования затруднено, зачастую не целесообразно, а иногда - невозможно.

Например, в полевых условиях необходимо защищать клавиатуру и мышь от пыли, брызг и перепадов температуры. В некоторый случаях, например, в банкоматах, требуются не 102, а чуть более десятка клавиш. Использование «вандалонеустойчивой» мыши вообще исключено. Кроме того, в темное время суток любые клавиши требуют подсветки, а в малогабаритных интеллектуальных устройствах применение каких-либо клавиш вообще нежелательно. Многие справочные системы, установленные, например, на вокзалах, предполагают работу с неквалифицированными пользователями. Использование традиционной клавиатуры в этом случае требует от них определенных умений. В противном случае работа замедляется, и пользование справочной системой становится неудобным. Часто компьютер является вспомогательным инструментом, например, в работе врача, звукорежиссера или оператора электростанции. В этом случае рабочее место, как правило, занято, и размещение клавиатуры становится проблемой. Кроме того, применение традиционной клавиатуры, например, оперирующим хирургом, порой невозможно. Еще труднее оператору электростанции, следящему за технологическими процессами зачастую на 5 и более мониторах. В этом случае применение большого числа клавиатур крайне неудобно, а использование одной клавиатуры и переключение между экранами значительно замедляет реализацию оперативных действий. Применение сенсорных экранов позволит решить большую часть этих проблем. Сенсорный экран (Touch Screen) - это, в общем случае, специальное устройство, которое крепится к экрану отображающего устройства и выполняет функции определения координат точки касания. Функционально в любом сенсорном экране можно выделить три части: сенсор (специальная панель или датчики), контроллер, который управляет датчиками и вычисляет или подготавливает данные для вычисления координат точки касания, и драйвер - программа, которая выполняет необходимые преобразования данных, поступающих от контроллера, проводит, при необходимости, дополнительные вычисления и корректирует работу контроллера.

Для передачи данных от контроллера к компьютеру используется обычно USB или последовательный (Com) интерфейс. Сенсорные экраны различных принципов действия могут работать с плоскопанельными отображающими устройствами (плазменными и жидкокристаллическими панелями), проекционными экранами (с фронтальной и обратной проекцией) и экранами на основе электронно-лучевой трубки (плоскими, цилиндрическими и сферическими). Принцип действия отображающего устройства, снабженного сенсорным экраном, в общем случае можно описать следующим образом. На экран отображающего устройства выводится некоторая графическая информация. Например, это может быть стандартный интерфейс операционной системы или графическая оболочка интеллектуального справочного киоска на вокзале. Пользователь видит изображение через плотно прилегающий прозрачный сенсорный экран и, при необходимости, касается изображения в определенных точках. Контроллер сенсорного экрана передает информацию с датчиков в компьютер, где окончательно вычисляются координаты точки прикосновения. Далее производится сопоставление координат, поступивших с контроллера, с координатами программных элементов интерфейса и определяется элемент интерфейса, который хотел указать пользователь. Таким образом, снабженный сенсорным экраном дисплей позволяет без помощи клавиатуры и мыши перемещать курсор, нажимать на кнопки, открывать папки, запускать программы, вводить текст с помощью экранной клавиатуры и рисовать. Благодаря способности не только выводить изображение, но и вводить данные, такие устройства называют интерактивными или, реже, - интеллектуальными (Smart Board). Необходимо отметить, что в нашей стране сенсорные экраны появились сравнительно недавно, а потому существует некоторая путаница в названиях устройств. Например, термином «сенсорный экран» называют совокупность сенсорных датчиков (в виде панели) и контроллера, также обозначают отображающее устройство, снабженное накладным или встроенным сенсорным экраном.

Как уже отмечалось выше, многие интерактивные дисплеи позволяют рисовать по их поверхности. Эта особенность делает такие устройства удобными при проведении презентаций, конференций или лекционных занятий (рис.2).

Докладчик получает возможность не только демонстрировать рисунки или фотографии, но и делать необходимые пометки и надписи в процессе изложения материала. Причем существует возможность сохранить все сдела н ные изменения и, при желании, распространить копии среди слушателей. Существует большое количество видов сенсорных экранов, отличающихся не только принципом действия, но и конструктивными ос о бенностями. Среди этого многообразия можно выделить следующие типы технологий: резисти в ные, емкостные, матричные, индуктивные, а также использующие повер х ностно-акустические волны ( ПАВ), инфракрасное ( ИК) излучение и виде о камеры. Рассмотрим эти технологии подробнее.

Резистивная сенсорная технология

Первые сенсорные экраны создавались с использованием прозрачной резистивной пленки. Эта технология широко распространена и сейчас. Существуют 4, 5 и 8-проводные резистивные сенсорные экраны. Основу конструкции 4-проводного экрана составляют две прозрачные пленки из полиэстера (polyester), майлара (mylar), пластизола (plastisol, PL) или полиэтилентерефталата (polyethylene terephtalate, PET), находящиеся друг напротив друга и разделенные микроскопическими шариками-изоляторами. Внутренние, обращенные друг к другу поверхности пленок покрыты прозрачным токопроводящим (резистивным) составом на основе двуокиси индия и олова (indium tin oxide - ITO). Для определенности назовем один из резистивных слоев задним, а другой, расположенный ближе к наблюдателю, передним (рис.3).

Контакт с этими слоями обеспечивается посредством двух пар металлизированных полосок-электродов. Первая пара расположена вертикально, по краям заднего слоя, а вторая пара - горизонтально, по краям переднего слоя. Все четыре электрода подключены к микроконтроллеру, который последовательно определяет координаты точки касания по горизонтали и вертикали. Работу контроллера в первом случае можно приблизительно описать следующим образом. На вертикальные электроды заднего резистивного слоя подается постоянное напряжение, например, 5 В, и от одного электрода к другому протекает некоторый ток I. При этом на каждом горизонтальном участке заднего резистивного слоя ток создает падение напряжения, пропорциональное длине участка.

При касании экрана передний резистивный слой деформируется и касается заднего слоя. В этом случае передний слой выполняет роль щупа, определяющего напряжение на заднем слое в точке касания. Горизонтальные электроды переднего слоя замыкаются микроконтроллером накоротко (для уменьшения влияния сопротивления переднего резистивного слоя) и суммарный сигнал 5 поступает через буферный каскад, (имеющий большое входное сопротивление), на аналого-цифровой преобразователь (АЦП). Напряжение на входе АЦП определяет положение точки касания по горизонтали. Для определения координаты по вертикали передний и задний резистивные слои «меняются местами»: на горизонтальные электроды переднего слоя микроконтроллер подает постоянное напряжение, а электроды заднего слоя замыкает, (этот слой используется как щуп). Определение координат точки касания производится микроконтроллером с высокой скоростью - более ста раз в секунду. Слабым звеном 4-проводного экрана является передняя пленка из полиэстера. Многократные деформации приводят к разрушению проводящего слоя, в результате чего уменьшается точность определения координат. Производители гарантируют стабильную работу устройства при количестве нажатий в одной точке до миллиона.

8-проводные экраны отличаются от 4-проводных незначительно - для повышения точности определения координат введены дополнительные 4 проводника, которые соединены с теми же самыми двумя парами металлизированных электродов, расположенных по краям проводящих покрытий. Однако надежности экрана в целом это не увеличивает.

А вот 5-проводный резистивный экран обладает улучшенными характеристиками. Переднее резистивное покрытие, подвергающееся деформации при касании, заменено проводящим и используется исключительно в качестве щупа. А заднее резистивное покрытие наносится не на пленку полиэстера, а на стекло. Поэтому к названию 5-проводных экранов часто добавляют аббревиатуру FG (Film on Glass). Четыре электрода, которые создают вертикальный и горизонтальный градиент напряжений, находятся на заднем резистивном слое. Пятый электрод является выводом переднего проводящего слоя-щупа. Повреждение этого слоя при деформации практически не влияет на точность определения координат, поэтому такие экраны более надежные. Считается, что они выдерживают до 35 миллионов нажатий в одной точке. Кроме того, 5-проводные экраны, в отличие от 4 и 8-проводных, допускают установку на сферические или цилиндрические экраны отображающих устройств на основе ЭЛТ.

Резистивная технология позволяет определять координаты точки касания с высокой точностью. Теоретически, применение 12-разрядных АЦП позволяет различать 4096х4096 точек по горизонтали и вертикали. На практике разрешающая способность вдвое ниже, однако этого вполне достаточно при использовании резистивного экрана, например для рисования или ведения записей в электронном блокноте.

К достоинствам резистивных экранов следует отнести: возможность активации (касания) любым предметом (пальцем, банковской карточкой или тупым концом стилуса), стойкость от пыли, влаги, конденсата, паров, загрязнения поверхности, что позволяет им надежно работать, когда другие типы экранов выходят из строя; низкую стоимость и простоту установки.

Основные недостатки - низкая прозрачность (примерно 75% для 4 и

8-проводных экранов и до 85% - для 5-проводных), недостаточная механическая прочность (экран можно повредить острым предметом),

необходимость периодической калибровки экрана, плохая работа при низких температурах, (что связано с уменьшением эластичности передней деформируемой пленки). Кроме того, резистивный экран способен распознавать только одну точку касания, то есть если при вводе текста ладонь руки давит на экран, то координаты вычисляются неверно. И лишь совсем недавно резистивные панели от фирмы Elo Touch “научились” распознавать

несколько одновременных нажатий, правда на програмном уровне. Резистивные экраны распространены очень широко. Они применяются там, где не требуется высокое качество цветопередачи и исключена возможность актов вандализма, например, в POS (point of sail)-системах (кассовые терминалы), карманных компьютерах, GPS-навигаторах, сотовых телефонах, промышленном и медицинском оборудовании, сложных измерительных приборах и других подобных устройствах.

Емкостная сенсорная технология

Определение координат точки касания в емкостных экранах осуществляется, в первую очередь, благодаря особенностям физического строения тела человека - способности проводить электрический ток и вытекающего отсюда наличия определенной электрической емкости. Рассмотрим устройство емкостного экрана. На прочное стекло, служащее основой конструкции, нанесен резистивный слой, соединенный с четырьмя электродами, расположенными по углам экрана (рис.5).

Для защиты от повреждений слой покрыт снаружи тонкой пленкой специального проводящего состава. Все четыре электрода подключены к микроконтроллеру, который определяет координаты точки касания, сравнивая либо броски напряжения на четырех токовых датчиках, либо частоты четырех идентичных генераторов, в которых задающие RC-цепочки шунтированы изменяющимися емкостями электродов экрана. Рассмотрим первый случай, как наиболее простой. На все четыре электрода через прецизионные резисторы равных номиналов, служащие токовыми датчиками, микропроцессор подает некоторое напряжение, например, 5v. В итоге все четыре электрода панели имеют одинаковый потенциал, поэтому ток не течет и не создает на токовых датчиках падения напряжения. Когда проводящего экрана касается человек, ситуация изменяется. Дело в том, что тело человека проводит ток, а потому обычно имеет потенциал земли - нулевой (сетевые и высокочастотные наводки имеют очень малую амплитуду). При касании пальцем или проводящим предметом сенсорного экрана на проводящем слое появляется точка, потенциал которой меньше, чем потенциалы четырех электродов, поэтому возникает электрический ток. Он течет от источника питания, через токовые датчики, участки резистивного покрытия и тело человека. Чем ближе точка касания к электроду, тем меньше участок резистивного покрытия и, следовательно, меньше сопротивление этого участка, а значит - больше амплитуда тока. Для преобразования тока в напряжение служат прецизионные резисторы, сигналы с которых подаются на четыре отдельных АЦП. Сравнение сигналов на выходах этих АЦП позволяет определить координаты точки касания. Точность емкостных экранов сравнима с точностью резистивных. Меньшее количество слоев делает их более прозрачными (до 90%). Отсутствие элементов, подвергающихся деформации, увеличивает надежность - такие экраны допускают более 200 миллионов нажатий в одну точку и позволяют работать при достаточно низких температурах (до -15°С). Однако переднее проводящее покрытие, участвующее в определении координат, боится механических повреждений, влаги (конденсата) и любых проводящих ток загрязнений экрана.

Недостатками таких экранов являются: необходимость касания только проводящим предметом (пальцем или специальной указкой - стилусом (stylus), проводящим ток), кроме того, пользователь должен иметь достаточно хороший контакт с «землей», иначе после нескольких касаний он приобретает потенциал экрана, и в работе микроконтроллера начинаются сбои. Эти экраны не допускают одновременного нажатия в двух точках, т.е не поддерживают MultiTouch. Сфера применения практически такая же, как и у резистивных экранов, однако наличие статического заряда и протекающего через тело человека тока ограничивает использование, например, в медицинском оборудовании. Емкостные экраны надежнее резистивных, и потому предпочтительнее при интенсивном использовании. Их применяют там, где мала вероятность намеренного повреждения - например, в аптеках, библиотеках, театрах, вокзалах, информационных киосках, банкоматах, терминалах оплаты и.т.д.

Проекционно-емкостн ая сенсорная технология

От большинства перечисленных выше недостатков свободен другой вид емкостных экранов, обычно называемых проекционно-емкостными или поверхностно-емкостными (фирменные названия соответственно - «projected capacitive technology», PCT, «surface capacitive»). В конструкции используется две системы из вертикальных и горизонтальных хорошо проводящих ток электродов, изолированных друг от друга слоем стекла и образующих решетку (рис.6).

Каждый электрод, будучи проводником, имеет некоторую электрическую емкость. Можно сказать, что в данном случае мы имеем дело со своеобразным конденсатором, одной обкладкой которого является сам электрод, а другой - любой проводящий ток предмет, например, человек. Все горизонтальные электроды (и все вертикальные) имеют одинаковые размеры, форму и проводимость, поэтому, при отсутствии вблизи экрана проводящих предметов, их емкости приблизительно равны. Микроконтроллер последовательно подает на каждый из электродов импульс напряжения и измеряет амплитуду возникающего импульса тока, который заряжает «конденсатор». При поднесении к экрану проводящего предмета, например, пальца, емкость электродов меняется (рис.7).

Чем ближе электрод находится к проводящему предмету, тем больше его емкость, потому что, как известно из физики, емкость обратно пропорциональна расстоянию между обкладками. А чем больше емкость электрода, тем больше импульс «заряжающего» тока. Микроконтроллер сравнивает эти импульсы и находит электрод, имеющий максимальную емкость - это и есть координата точки касания. Принцип действия этой технологии можно рассмотреть с другой точки зрения. При

последовательном сканировании всех электродов вблизи поверхности экрана создается электрическое поле, напряженность которого во всех точках примерно одинакова. Проводящий предмет, поднесенный к экрану, модулирует (изменяет) картину распределения напряженности поля. Микропроцессор фиксирует изменения и вычисляет координаты положения проводящего предмета. Отсюда вытекает второе название технологии - Near Field Imaging (NFI).

PCT-экраны, так же как и емкостные, имеют высокую прозрачность (до 90%) и большой ресурс нажатий - 200 миллионов одну точку, способны работать в очень широком диапазоне температур (от - 40 °С до 60°С). Загрязнения поверхности экрана, проводящие электрический ток, а также влажность вносят определенный вклад в изменение напряженности поля на поверхности экрана. Однако это изменение является постоянным, оно фиксируется электроникой и вычитается при анализе, то есть, другими словами, игнорируется. Высокая чувствительность позволяет использовать для защиты экрана очень толстое (до 18 мм) и очень прочное стекло. Кроме того, для активации экрана не обязателен электрический контакт, (то есть можно касаться экрана рукой в перчатке), и не накладывается особых требований к проводимости человека и пола (земли). Другой важной особенностью является возможность регистрации одновременно нескольких точек касания -- MultiTouch, причем экран способен различать, например, касание стилусом и рукой. Обычно используется проводящий ток стилус, который вдобавок соединяется с системным блоком компьютера, приобретая нулевой потенциал, что позволяет ему вызывать значительно большие изменения емкости электродов, нежели пальцу руки. Одновременное использование стилуса и пальца руки позволяет более полно эмулировать работу мыши и ее клавиш. Кроме того, экран позволяет игнорировать ладонь руки, касающейся экрана при рисовании или письме.

К недостаткам PCT-устройств следует отнести меньшую, чем у лучших моделей традиционных емкостных экранов, разрешающую способность, которой, тем не менее, достаточно для рисования или ввода надписей. Кроме того, при наличии очень толстого защитного стекла возрастает погрешность определения координат по краям экрана. Дело здесь в том, что пользователь касается не объекта на дисплее, а его проекции на переднюю поверхность стекла сенсорного экрана. А при большом угле наблюдения (относительно нормали к экрану) и значительной толщине стекла, эта проекция находится не строго над объектом, а смещается в сторону (параллакс). Другими словами, палец упирается в стекло не совем там, где находится желаемая точка. PCT-экраны незаменимы в тех случаях, когда требуется прочное, надежное и «вандалоустройчивое» устройство. Банкоматы, пункты продажи билетов, справочные киоски, уличные платежные терминалы, например, на вокзалах, стадионах или в транспорте, обычно оснащаются именно такими сенсорными экранами.

Еще эта технология используется в экранах планшетных компьютеров (TabletPC) и сенсорных панелях TouchPad компьютеров и ноутбуков, нетбуков, а также в iPhone.

Перечисленные выше виды сенсорных экранов (резистивные и емкостные) получили в настоящее время очень широкое распространение. Однако в ряде случаев удобнее примененять другие типы. Рассмотрим такие устройства подробнее.

Матричная сенсорная технология

Конструкция матричных сенсорных экранов, называемых иногда цифровыми, очень схожа с конструкцией резистивных экранов, только вместо сплошных резистивных слоев используются горизонтальные и вертикальные прозрачные проводящие полосы. При касании экрана передняя пленка деформируется и вертикальная полоса касается горизонтальной. Наличие замыкания фиксирует микропроцессор. Расположение всех электродов на плоскости известно, а потому пересечение замкнутых электродов однозначно определяет точку касания экрана.

Основной недостаток данного устройства - очень низкое разрешение, порядка 10 линий на дюйм. Поэтому такие устройства совершенно не подходят для рисования и ввода надписей. Главное достоинство - самая низкая среди всех сенсорных экранов стоимость. Надежность матричных экранов выше, чем резистивных, так как даже при нарушении проводящего слоя (изменении сопротивления) микроконтроллер определит наличие замыкания между электродами и вычислит координату точки касания точно. Матричные экраны применяются в тех случаях, когда требуется дешевый экран, а программа-приложение допускает низкую точность указания.

ПАВ сенсорная технология

Сенсорные экраны, использующие поверхностные акустические волны (surface acoustic wave, SAW), имеют довольно сложную конструкцию (рис.8).

По углам прочного стеклянного основания, служащего основой конструкции, находятся пьезопреобразователи, на которые подается электрический сигнал частотой 5 МГц. Этот сигнал преобразуется в ультразвуковую акустическую волну, направляемую вдоль поверхности экрана, а сам экран представляется для программы управления сенсорными датчиками в виде цифровой матрицы, каждое значение которой соответствует определенной точке экранной поверхности. В ограничивающую экран рамку вмонтированы так называемые отражатели, распространяющие ультразвуковую волну таким образом, что она охватывает все рабочее пространство сенсорного экрана. Специальные рефлекторы фокусируют ультразвук и направляют его на приемный датчик, который снова преобразует полученное им акустическое колебание в электрический сигнал. При касании экрана пальцем, часть энергии акустических волн поглощается, благодаря чему картина распространения ультразвука меняется. Управляющая программа сравнивает принятый от датчиков изменившийся сигнал с хранящейся в памяти компьютера цифровой матрицей - картой экрана, и вычисляет исходя из имеющихся данных координату касания, Точность этих экранов выше, чем у матричных, но ниже, чем у традиционных емкостных. Для рисования и ввода текста они, как правило, не используются.

Главным достоинством экрана на ПАВ является возможность отслеживать не только координаты точки, но и силу нажатия. Это возможно, так как степень поглощения акустических волн зависит от величины давления в точке касания.

Это полезно, к примеру, при проектировании систем управления промышленным оборудованием, например, для плавного изменения скорости вращения двигателей или для изменения освещенности помещения.

Так же с ними возможно работать даже на сильно поцарапанных экранах,

ПАВ экраны имеют широкий диапазон рабочих температур: от -20 до +50,

поддерживают высокие разрешения экрана (до 4096 на 4096 точек). В них отсутствуют механические элементы и какие-либо покрытия, ухудшающие качество картинки. В некоторых случаях, для борьбы с бликами, стекло вообще не используется, а излучатели, приемники и отражатели крепятся непосредственно к экрану отображающего устройства.

Главным недостатком являются сбои в работе при наличии вибрации или воздействии акустическими шумами, а также при загрязнении экрана. Любой посторонний предмет, размещенный на экране, (например, жевательная резинка), полностью блокирует его работу. Кроме того, ПАВ сенсорные экраны стоят на порядок дороже емкостных и резистивных. Данная технология требует касания предметом, который обязательно поглощает акустические волны, то есть, например, пластиковая банковская карточка в данном случае неприменима. Несмотря на сложность конструкции, эти экраны довольно долговечны. По заявлению, например, тайваньской фирмы GeneralTouch, они выдерживают до 50 миллионов касаний в одной точке, Это превышает ресурс 5 проводного резистивного экрана. Экраны на ПАВ применяются, в основном, в игровых автоматах, охраняемых справочных системах и образовательных учреждениях.

Инфракрасная сенсорная технологи я

В ряде случаев к качеству изображения, воспроизводимого отображающим устройством, предъявляются строгие требования. Это касается дисплеев, предназначенных, в основном, для просмотра телевизионных передач, видеофильмов или отображения иллюстративного материала

(слайдов и фотографий), например, в художественном кружке или фотостудии. При необходимости оснащения такого устройства сенсорным экраном лучшим решением будет применение инфракрасной технологии. Для определения точки касания используются две линейки светодиодов, расположенные по вертикали и горизонтали, и две линейки фотодиодов, расположенные на противоположных сторонах экрана (рис.9).

Каждому светодиоду соответствует свой фотодиод. Работает такая оптическая пара следующим образом. При подаче напряжения на светодиод он излучает невидимый для человека инфракрасный свет в пределах очень небольшого телесного угла, чтобы попасть на «свой» фотодиод «не задеть» соседние. Любое препятствие, например, касающийся экрана палец руки, частично или полностью перекрывающее световой луч, приводит к уменьшению или прекращению электрического тока через соответствующий фотодиод. Это изменение фиксируется микроконтроллером, позволяя вычислить координату касания с высокой точностью. Обычно светодиод (и, соответственно, фотодиод) в линейке имеет размеры порядка 2,5 мм, то есть на каждый квадратный сантиметр панели приходится четыре горизонтальных и четыре вертикальных сканирующих луча. Однако механизмы интерполяции, используемые микроконтроллером, позволяют вычислять положение препятствия с большей точностью. Инфракрасный сенсорный экран выполняется в виде рамки, которая не имеет никаких стекол или прозрачных пленок. Поэтому изменение яркости, контраста и цветопередачи изображения, а также появление дополнительных бликов исключены, что является несомненным достоинством экрана. Плюсами так же является то, что можно использовать любой предмет для касания (стилус к примеру или обратная сторона ручки), хорошо переносят перепады температур, имеют высокую чувствительность и выдерживают бесконечное колличество нажатий в одну точку.

Инфракрасная технология не лишена ряда недостатков. Применение в качестве отображающего устройства жидкокристаллических панелей нежелательно, так как касание их поверхности может привести к повреждению TFT-транзисторов и появлению «мертвых» точек, (которые всегда либо включены, либо выключены). Рамка сенсорного экрана зачастую не прилегает к экрану дисплея вплотную, а находится на некотором расстоянии, при этом вследствие параллакса становятся заметными ошибки определения координат по углам. Устройство имеет невысокую надежность, что связанно, во-первых, с небольшим сроком службы ИК-светодиодов, а во-вторых, с особенностями конструкции - оптопары боятся пыли, загрязнений и конденсата. Попадание прямого солнечного света вызывает сбои в работе. Кроме того, такие экраны имеют самую высокую стоимость. Применяются ИК-экраны обычно в образовательных учреждениях - в качестве интерактивных панелей большого размера, и в игровых автоматах.

Прочие технологии

Для работы с большими отображающими устройствами также используется технология DViT (Digital Vision Touch) фирмы «Smart Technologies». Сенсорный экран представляет собой лист 12 полиэстера, заключенный в прямоугольную рамку. По углам рамки находятся миниатюрные видеокамеры, которые формируют изображение поверхности экрана (Рис.10).

Для вычисления координаты точки касания математически достаточно двух камер, расположенных в соседних углах. Однако для повышения точности часто используется четыре камеры. Для защиты экрана отображающего устройства, например, ЖК-панели, служит лист полиэстера. Он не содержит резистивных или проводящих слоев, поэтому не искажает цветопередачу дисплея и имеет высокую прозрачность - до 95%. Точности вычисления координат достаточно для рисования и ввода надписей. Эта технология предназначена для применения в образовательных учреждениях, при проведении конференций и презентаций. Сенсорная насадка может использоваться с матричными дисплеями и проекционными (прямой и обратной проекции) отображающими устройствами, формирующими изображение большого размера. В комплекте с экраном может поставляться лоток с «цветными» электронными перьями для рисования и ластиком. Цвет используемого пера или наличие на экране ластика определяется либо с помощью датчиков лотка, фиксирующих отсутствие инструмента, либо с помощью видеокамер. Это весьма удобно, так как для выбора цвета надписей и переход в режим стирания осуществляются автоматически.

Индуктивная сенсорн ая технология

В отличие от всех вышеперечисленных видов, индуктивные сенсорные экраны не продаются отдельно от устройства отображения. Их принцип действия схож с PCT-технологией. Под жидкокристаллическим экраном размещается панель, содержащая выполненные печатным способом катушки индуктивности. При подаче переменного напряжения катушки формируют на поверхности экрана электромагнитное поле. В качестве указателя используются стилус, в котором находится настроенный в резонанс контур. При поднесении стилуса к экрану этот контур модулирует электромагнитное поле, изменяя индуктивности расположенных под экраном печатных катушек. Причем чем ближе катушка к контуру стилуса, тем значительнее изменение ее индуктивности. Микроконтроллер фиксирует параметры катушек и вычисляет положение стилуса. Для повышения функциональности стилус обычно снабжается встроенной в наконечник микрокнопкой, которая подключает дополнительные витки к контуру и тем самым позволяет микроконтроллеру различать два разных состояния указателя, т.е

с помощью стилуса можно эмулировать нажатие правой кнопки мыши. Индуктивный экран не влияет на качество изображения, не реагирует на касание ладонью при письме или рисовании и широко применяется в мобильных устройствах, например, планшетных компьютерах.

Будущее уже сейчас

Большинство новейших разработок применяются пока весьма ограниченно. Однако некоторым «счастливчикам» удается вырваться из «застенков» лабораторий.

В настоящее время, например, внедряется технология использования дисперсионных волн (Dispersive Signal Technology, DST). Суть ее такова. Палец или стилус, касающийся подложки экрана, инициирует объемные изгибные акустические колебания. В углах подложки находятся пьезоэлектрические преобразователи, трансформирующие энергию вибрации в электрические сигналы. По разности фаз приходящих из углов колебаний микроконтроллер определяет положение точки касания. Экран имеет высокую прозрачность, долговечен и позволяет игнорировать касание ладони. Активируется любым предметом. Возможно использование с экранами как маленького, так большого размера.

Другой инновационной технологией является применение LCD-панелей со встроенным оптическим сенсорным экраном. Работает устройство следующим образом. Для упрощения и удешевления всей конструкции применяется ЖК-экран, каждый пиксель которого состоит из четырех субпикселей (красного, зеленого, синего и белого). Последовательно с TFT-транзистором белого субпикселя включается фототранзистор (рис.11).

Белые субпиксели покрываются изнутри светонепроницаемым составом, однако снаружи фототранзисторы подвержены воздействию внешних источников света, например, солнца или настольной лампы. Механизм обновления изображения панели в изменениях не нуждается. При поступлении сигнала логической единицы на горизонтальный электрод («Select»), открываются TFT-транзиторы субпикселей всей строки. Сразу после этого по вертикальным электродам («Data») на конденсаторы красного, зеленого и синего субпикселей подается напряжение, соответствующее их яркости в данном кадре. А вот электроды белых субпикселей используются для измерения сопротивления цепочек с фототранзисторами. В случае попадания света от внешних источников фототранзисторы открыты и сопротивление низкое. Если же доступ света перекрыт пальцем или стилусом, то фототранзистор закрывается и не пропускает ток - сопротивление высокое. Микропроцессор сравнивает сопротивления в процессе развертки и таким образом вычисляет координаты точки касания. Устройство способно работать в очень широком диапазоне освещенности экрана - от 50 до 50 000 Люкс.

Заключение

Применение сенсорных экранов дает ряд преимуществ их обладателям. В торговле, находясь в торговых залах или офисах продаж, сенсорные экраны используются для поиска товара или услуги и необходимой информации по нужной продукции (потребительские характеристики, цена, наличие на складе, скидки и др.). Используя интерактивные киоски, предприниматель получает возможность увеличить ассортимент товара без увеличения торговых площадей, ведь для заказа, покупателю необходимо всего лишь выбрать нужный ему товар на сенсорном экране информационного терминала и заказать его. В промышленности сенсорные системы управления широко применяются для автоматизации различных процессов производства. Установленные в цехах, сенсорные терминалы позволяют контролировать качество производства, управлять технологическими процессами, использоваться в качестве систем проведения инструктажа и контроля знаний и прочего. Их применение на производстве дает возможность лучше организовать производственный процесс и свести к минимуму человеческий фактор. Сенсорные информационные киоски, установленные в больницах и других медицинских учреждениях, предоставляют посетителям информацию о медицинских услугах, справочную информацию и полезные сервисы. Сенсорные терминалы и позволяют существенно разгрузить персонал медицинских учреждений и улучшить качество обслуживания посетителей. Сенсорные терминалы, установленные в аптеках, могут содержать информацию: о медицинских товарах, о наличии или отсутствии того или иного товара в сети аптек, научные статьи о препаратах и пр. Так же сенсорные информационные терминалы можно использовать в музеях, библиотеках и других культурных местах. Сенсорные терминалы, расположенные в музеяхмогут содержать как организационную информацию (время проведения экскурсий и маршруты, расположение залов, экспонатов и пр.), так и быть виртуальными музеями, содержащими изображения и описание произведений искусства.На вокзалах сенсорные информационные терминалы способны оперативно предоставить людям информацию, касающуюся расписания движения транспортных средств, наличии свободных мест, стоимости билета и прочее. Информационные терминалы, установленные в банках, содержат: информацию по всем видам вкладов, включая срок вклада, необходимые документы, процентные ставки, текущую информацию по вкладу; возможностям и видам кредитования населения в зависимости от целей кредита, расчет ежемесячной суммы погашения кредита, необходимые документы; аренде сейфов; курсах валют; видам пластиковых карт, информацию о получении и системе обслуживания; образцам заполнения документов. Использование информационного киоска в банке позволяет снизить нагрузку на специалистов банка, повысить скорость работы и улучшить качество обслуживания. В кафе и ресторанах сенсорные и гаджеты давно используются официантами для сообщения повару информации о заказанных блюдах, для их приготовления. Расположенный в кафе информационный киоск также способен предоставить его посетителям ассортимент блюд на выбор.

Использование сенсорных информационных терминалов практически в любом месте позволяет значительно ускорить процессы обслуживания и производства. Кроме того наличие информационного сенсорного киоска в компании является не только показателем ее солидности, но и заботы о клиентах. сенсорный планшет терминал

Использование сенсорных панелей и планшетов вместо меловых досок в сфере образования также сулит определенные выгоды. Применение отображающих устройств позволяет эффективно использовать заранее подготовленный иллюстративный материал, что экономит массу времени. Наличие у дисплея сенсорных свойств, позволяет делать любые пометки, надписи и рисунки в процессе объяснения. Вся изложенная на лекции информация, включая рисунки преподавателя, легко копируется в неизменном виде в любом количестве и может использоваться учащимися.

В электронике так же сенсорные экраны удобны тем, что:

Возможно делать минимальное количество органов управления

Простото графического интерфейса

Легко управляемы

Оперативны доступом к функциям устройства

Расширены мультимедийные возможности

Список используемых источников

Электронный ресурс

1. Сенсорные датчики [Электронный ресурс] http://kiosksoft.ru/news/2006/07/15/1394.html

2. Типы сенсорных экранов [Электронный ресурс] http://www.ferra.ru/online/integral/92464/

3. Статьи и обзоры [Электронный ресурс]

http://www.plast-game.ru/articles/list.htm

4. Сенсорный экран: история создания сенсорного экрана [Электронный ресурс] http://reeed.ru/technology_touch_screen.php

5. Мануальное воздействие: технологии сенсорных экранов [Электронный ресурс] http://www.computerra.ru/input/37214/

6. Сенсорные технологии: типы сенсорных экранов [Электронный ресурс] http://www.itouch.ru/alldata.asp?p=44

7. Управлять касанием. Сенсорные дисплеи, виды и различия [Электронный ресурс] http://media.mabila.ua/ru/articles/touch_display

8. Сенсорные экраны - решение проблем. часть 1, часть 2, часть 3 [Электронный ресурс] http://broadcasting.ru/articles2/Oborandteh/sens_screen

9. Можно трогать [Электронный ресурс] http://it-master.biz/mogno-trogat

10. Управление в одно касание - вся правда о сенсорных экранах [Электронный ресурс] http://www.smsochka.ru/articles/detail.php?ID=71587

11. Тачскрин вдоль и поперек: сенсорные технологии в мобильных устройствах [Электронный ресурс] http://www.mobimag.ru/Articles/4282/Tachskrin_vdol_i_poperek.htm

12. Что такое сенсорная панель (touch panel)? [Электронный ресурс] http://www.beetouch.ru/technologies.php

13. Интересное о сенсорных экранах [Электронный ресурс] http://torg.mail.ru/article/7183/?print=1

14. Сенсорные технологии [Электронный ресурс] http://www.elotouch.ru/article.aspx?RubrID=121

15. Сенсорный экран [Электронный ресурс] http://ru.wikipedia.org/wiki/Touch_screen

16. Сенсорные экраны [Электронный ресурс] http://www.kiosksoft.ru/news/2006/07/15/1392.html

Размещено на Allbest.ru

...

Подобные документы

    История создания сенсорных экранов и понятие их технологии в наши дни. Суть технологий IntelliTouch и Acoustic Pulse Recognition (APR). Взаимодействие экрана и оператора ввода, принцип действия устройства. Преимущества и недостатки сенсорных экранов.

    реферат , добавлен 10.05.2013

    Обзор и анализ существующих технологий сенсорных сетей. Сетевая модель взаимосвязи открытых систем. Общая информация о модулях XBee Series 2. Запуск простейшей ZigBee-сети. Спящий датчик температуры. Проблемы и перспективы развития сенсорных сетей.

    дипломная работа , добавлен 01.06.2015

    Совмещение преимущества гибридных технологий с дешевизной традиционного поверхностного монтажа. Применение в современном приборостроении сверхбыстродействующих многоканальных бескорпусных микросхем. Технологический процесс изготовления микросборок.

    контрольная работа , добавлен 21.08.2010

    Типы и конструкция сенсоров на поверхностном плазмонном резонансе. Классификация, устройство и принцип действия сенсоров. Сенсоры с параллельным и расходящимся световым пучком. Применение поверхностного плазмонного резонанса для биохимических анализов.

    курсовая работа , добавлен 18.07.2014

    Изучение понятия информационных технологий и радиоэлектроники. Особенности признака деления – преимущества, которое приносит компьютерная технология. Основные этапы развития радиоэлектроники, направления ее взаимодействия с информационными технологиями.

    реферат , добавлен 31.10.2012

    Методы интеллектуального анализа данных на основе применения концепций информационных хранилищ. Обеспечение оперативности коммуникации участников бизнес-процессов. Внедрение информационных технологий на предприятии - выбор системы автоматизации.

    контрольная работа , добавлен 13.04.2009

    реферат , добавлен 19.09.2010

    Общие сведения и особенности автоматизации техпроцесса. Роботизированные комплексы и ГПС механообработки. Выбор компоновки и комплектующих деталей. Терминология сенсорных систем. Классификация датчиков и систем управления по различным признакам.

    курсовая работа , добавлен 23.04.2014

    Применение мембран для точного воспроизведения переходных процессов. Особенности направленного действия и расширения частотного спектра. Получение ультразвуковых колебаний в жидкостях. Сущность, основные виды и общая характеристика приемников звука.

    реферат , добавлен 28.09.2009

    Переход от двумерного к трехмерному пространству. Длительность жизненного цикла сети. Оценка периода стабильности и пропускной способности сети на основе отношения между радиусом покрытия и радиусом дальности связи. Зона покрытия сенсорного узла.

Введение

Постоянное совершенствование технологий обмена информацией между человеком и вычислительной техникой является важнейшей тенденцией развития современной информационной сферы. И если в стационарных компьютерах и ноутбуках основными средствами ввода остаются клавиатура и мышь (дополненная в ноутбуках емкостным тачпэдом), то в мобильных устройствах повсеместно используются сенсорные дисплеи, реагирующие на прикосновение, позволяя определить координаты точки касания. Сенсорные устройства применяются также в графических дисплеях для художественного и проектного творчества, в разного рода демонстрационных системах с большими экранами и различных системах регистрации и ввода небольшого объема данных. Для создания современных сенсорных дисплеев используются инженерные решения, основанные на применении целого спектра разнообразных физических явлений.

Резистивные сенсорные дисплеи

Сенсорные дисплеи, в которых обнаружение точки касания основано на протекании через нее постоянного электрического тока, называются резистивными. Хотя история этих устройств насчитывает более четырех десятилетий, они широко применяются до настоящего времени. Первую резистивную сенсорную панель разработал и в 1971 году запатентовал, назвав её элографом (elograph, в русскоязычных текстах встречаются также написания илограф, елограф), американец Сэм Хернст, работавший в университета штата Кентукки. А через три года, в 1974 году, основанная Хернстом для развития этой разработки компания Elographics, добившись прозрачности сенсорной панели, уже разработала на этой основе реагирующий на прикосновение дисплей. В 1994 году компания изменила название на Elo TouchSystems, а позже влилась в холдинг Tyco Electronics.

Принцип действия резистивных дисплеев наиболее просто пояснить на примере исторически первого четырехпроводного варианта, применяемого до настоящего времени. Поверх обычного жидкокристаллического дисплея монтируются подложка из стекла или пластика и гибкая мембрана, на обращенные друг к другу поверхности которых, разделенные полем точечных микроизоляторов, наносится проводящий слой. На противоположных краях подложки и мембраны взаимно перпендикулярно закреплены две пары электродов из металла (одна пара на подложке, другая на мембране). При точечном нажатии на мембрану она прогибается, и в точке соприкосновении проводящих слоев подложки и мембраны между ними возникает электрический контакт и начинается протекание тока. Измерение координат точки контакта по горизонтали и вертикали производится поочередно, при этом одна пара электродов соединяется накоротко, а на вторую подается напряжение. При контакте проводящих поверхностей напряжение на закороченной паре электродов определяется расположением точки контакта. Её координаты вычисляются специальным контроллером устройства. Конструкцию и принцип действия четырехпроводной резистивной сенсорной системы иллюстрируют рис. 1-3.

Недостатком четырехпроводного дисплея является то, что он перестает работать при повреждении резистентного слоя на мембране. Этот недостаток частично устранен в пятипроводной схеме (также разработанной компанией Хернста, патент 1977 года), где на мембрану нанесен проводящий слой, не теряющий работоспособность при её повреждении. Четыре электрода, на которые попарно поочередно подается напряжение, закреплены на задней пластине. Уровень напряжения на мембране зависит от точки её контакта с подложкой. Устройство и принцип определения координат контакта для пятипроводной резистивной панели поясняются рис. 4 и 5 соответственно. Именно по пятипроводной схеме, обеспечивающей сохранение работоспособности до восьмизначного числа касаний в одной точке, изготовляется в настоящее время большинство сенсорных панелей резистивного типа. Существует и восьмипроводная схема, гарантирующая более высокую точность измерения, однако она применяется реже вследствие большей дороговизны.

Новейшие разработки в области резистивной технологии сенсорных устройств позволяют воспринимать координаты нескольких одновременно нажатых точек: например, в разработках фирмы Fujitsu Components America, показанных на форуме SID 2010, максимальное число воспринимаемых одновременных нажатий достигало 32.

Несмотря на давность разработки их базовой схемы, резистивные сенсорные устройства до настоящего времени сохраняют свою популярность. Так, по статистике специализированного агентства DisplaySearch, в 2009 году сенсорные панели указанной категории составили половину суммарного количества продаж этого вида товара в мире. Этим они обязаны сравнительной простоте и дешевизне технологии, высокому быстродействию (задержка реакции порядка 10 мс) и нечувствительности к загрязнению поверхности. Кроме того, нажим на сенсорный экран может выполняться как пальцем, так и любым другим предметом – спичкой, стилусом, указкой.

Недостатками сенсорных приборов резистивного типа является требование периодической калибровки, а также неизбежное снижение яркости и четкости изображения из-за необходимости помещения перед экраном нескольких слоев прозрачных материалов (результирующий коэффициент светопропускания не превышает 85 процентов для пятипроводной схемы и еще более низок у четырехпроводной). Кроме того, неконтролируемые по силе нажатия на воспринимающий экран создают дополнительный риск его механического повреждения. Резистивные сенсорные экраны выполняются с двумя вариантами покрытия – глянцевым и матовым. Глянцевый вариант обеспечивает несколько большую четкость изображения, однако на нем возникают мешающие восприятию блики, а также более заметны загрязнения от прикосновения пальцев.

Разновидностью резистивных сенсорных систем, мало применяемой в настоящее время из-за принципиального ограничения по точности, являются матричные системы . В этом случае сплошные проводящие поверхности, соприкасающиеся при нажатии, заменены матрицей проводящих линий, горизонтальных на одной из поверхностей и вертикальных на другой. Преимуществом этой схемы является простота и дешевизна конструкции, возможность осуществления мультитача.

Помимо мобильных персональных вычислительных устройств различных типов, сферой применения резистивных сенсорных дисплеев являются мобильные телефоны, терминалы оплаты и ввода данных в промышленности, на транспорте, в медицинском оборудовании.

Емкостные сенсорные монитры

Идея использования изменения емкости системы для фиксации прикосновений к ней не уступает в давности истории резистивных схем данной категории. Её первым применением в промышленном изделии считается сенсорный планшет RAND Tablet, сконструированный Малкольмом Дэвисом и Томасом Эллисом в 1963 году и широко применявшийся в аппаратуре военного назначения.

В отличие от резистивных систем, выполненные по данной технологии сенсорные устройства, называемые также электростатическими, работают на переменном токе. Сенсорная панель устройства представляет собой пластину из стекла или прозрачного пластика, покрытую с внешней стороны прозрачным же проводящим слоем (обычно для этой цели применяется сплав оксидов олова и индия). К каждому из четырех углов экрана подведен электрод, связанный с контроллером, который подает на него импульсы переменного тока безопасной для человека мощности (рис. 6). При касании экрана пальцем тело человека действует как конденсатор большой емкости, через который проходит ток утечки. Величина тока утечки, определяемая контроллером, находится в обратной зависимости от расстояния между точкой контакта и электродом. Соотношение значений силы тока, протекающего через каждый из электродов, однозначно определяет расположение точки контакта.

Преимуществом емкостных сенсорных устройств перед резистивными является отсутствие гибкой мембраны, что повышает их надежность и срок службы, который достигает нескольких сот миллионов срабатываний. Большая долговечность достигается также за счет того, что срабатывание происходит при касании, не требуя нажатия. В то же время необходим контакт поверхности экрана с телом человека, что делает невозможным использование, например, стилуса из не проводящего материала или работу в перчатках. Могут использоваться только стилусы, специально предназначенные для данной категории устройств. Работа панели нарушается также при её загрязнении электропроводящими веществами.

Еще одним преимуществом емкостных сенсорных экранов перед резистивными является меньшее количество слоев материала над поверхностью непосредственного формирования изображения, что позволяет довести коэффициент светопропускания до величин порядка 90 процентов. Сенсорные системы на основе емкостной технологии применяются для создания крупномасштабных сенсорных экранов устройств типа банкоматов, информационных киосков и блоков ввода информации в разнообразном промышленном оборудовании. По тому же принципу может быть построена реагирующая на прикосновение клавиатура повышенной долговечности и надежности.

Сенсорные мониторы на основе проекционно-емкостной технологии

Проекционно-емкостная технология также основана на определении места касания путем измерения утечки переменного тока через тело человека, но использует другое устройство сенсорной панели. Сенсорная панель этой конструкции состоит из двух изолирующих пластин из стекла, между которыми помещены две взаимно перпендикулярные системы тонких электродов, образующих прямоугольную сетку (рис 7). Контроллер посылает через эту систему электродов короткие импульсы переменного тока. Прикосновение пальца или нахождение его вблизи сенсорной поверхности вызывает фиксируемую контроллером утечку тока на ближайших электродах, что позволяет вычислить место контакта.

Достоинствами данной технологии являются длительный срок службы, высокие, до 90 процентов, показатели светопропускания, устойчивость к механическим повреждениям и загрязнению экрана, большой диапазон рабочих температур. Эти качества сенсорных панелей описываемой категории делают их оптимальными для применения в уличных устройствах (при этом важна свойственная описываемой технологии возможность работы в перчатках) и разного рода системах массового обслуживания.

В целом данная технология, наряду с сенсорными устройствами резистивного типа, является в настоящее время наиболее востребованной. Так, в 2009 году, согласно статистике агентства DisplaySearch, сенсорные панели проекционно-емкостного типа составили почти треть суммарных поставок изделий данной категории. Точность определения координат точки прикосновения у этой системы потенциально очень высокая, однако уменьшается при увеличении толщины защитного слоя, когда начинает проявляться эффект параллакса. Важное преимущество проекционно-емкостной технологии состоит в возможности определения одновременного касания в нескольких точках (функция мультитач).

Основным недостатком является сложность и высокая стоимость используемого электронного оборудования, возрастающая с увеличением размеров экрана. Кроме того, как и резистивным, устройствам данной категории требуется периодическая калибровка. Они также недостаточно удобны для воспроизведения плавного передвижения точки контакта, необходимого при рисовании на экране или перетаскивании изображений. Областью применения сенсорных экранов данного типа являются сотовые телефоны, цифровые медиаплееры, информационные киоски и уличные устройства ввода данных, тачпэды портативных компьютеров.

Оптические технологии

Для построения сенсорных систем в настоящее время начинает использоваться также оптический диапазон излучений в его инфракрасной части. Хотя масштаб применения подобных устройств пока невелик (так, в 2009 году оптические сенсорные панели составили три процента всей массы общемировых поставок изделий этого класса), возможно его расширение в будущем.

Инфракрасный сенсор с матрицей стационарных оптических пар

В данной категории устройств перед экраном на двух его взаимно перпендикулярных сторонах в специальной крепежной раме размещаются линейки инфракрасных излучателей, а на противоположных сторонах − приемники. Излучатели представляют собой фотодиоды с фокусирующими линзами для формирования узкого луча, а в качестве приемников используются фотодиоды или фототранзисторы (рис.8). Таким образом перед экраном создается невидимая измерительная сетка, перекрывание определенных лучей которой при приближении к экрану любого предмета фиксируется контроллером.

Максимально достижимая точность определения координат точки контакта при этом ограничивается размерами оптических элементов. Обычно шаг образуемой ими координатной сетки оказывается равным 2-3 мм, что в пересчете для дисплея с диагональю 32 дюйма эквивалентно разрешающей способности не более 320x240 точек. Этим объясняется тот факт, что данные системы в основном применяются для больших демонстрационных экранов в образовательных и т. п. учреждениях. Дополнительную погрешность вносит явление параллакса (возникающее в ситуации, когда соприкасающийся с экраном предмет не строго перпендикулярен его плоскости), поскольку измерительная сетка формируется на некотором расстоянии от поверхности экрана.

Преимущество инфракрасных систем состоит в отсутствии перед экраном каких-либо дополнительных слоев, снижающих его четкость, контрастность и другие параметры качества изображения. Системы описываемого класса не нуждаются в калибровке. Дополнительное преимуществом является то, что весь модуль инфракрасного оборудования может быть съемным и компоноваться на любой соответствующий по величине экран.

К недостаткам инфракрасных систем описанного типа, кроме ограниченной точности, относится необходимость периодической очистки от пыли и загрязнений и предохранения от прямых солнечных лучей.

Инфракрасный сенсор с разверткой оптического луча

В этой модификации конструкции сенсорных систем вместо создания постоянной тестовой инфракрасной сетки используется единственный инфракрасный луч, последовательно сканирующий проверяемую поверхность за счет действия механизма развертки. Для генерации поискового луча применяется светодиод или полупроводниковый лазер инфракрасного диапазона. При отсутствии касаний проверяемой поверхности луч рассеивается, а при прикосновении к ней постороннего предмета – отражается от него. Отраженный луч воспринимается фотодиодом. Параметры и время прихода отраженного луча несут информацию о положении отражающего препятствия, обрабатываемую контроллером. Данная технология предназначена для работы с широким диапазоном размеров рабочей области, в т.ч. пригодна для компактной реализации в портативных устройствах. Её характерной особенностью является возможность работы с проекцией изображения на любую поверхность. Недостатками системы являются ограничения как по разрешающей способности, свойственные устройствам с инфракрасными оптическими парами, так и по возможности восприятия нескольких одновременных касаний. Ошибка вычисления положения точки касания возрастает, если она расположена на краях экрана, что объясняется малым углом падения сканирующего луча для этих зон.

Первой сферой применения инфракрасных сенсоров с разверткой луча оказалось создание миниатюрных виртуальных клавиатур для портативных компьютеров и сотовых телефонов (рис. 9). Позже интерес к ним проявили разработчики систем с различными типами проекторов – как мультимедийных, так и встроенных в портативные приборы (рис. 10).

Инфракрасный сенсор компании NextWindow

В сенсорных панелях с использованием инфракрасного излучения, выпускаемых компанией NextWindow, используется собственная оригинальная разработка компании, сочетающая в себе отдельные черты описанных выше вариантов реализации рассматриваемой категории изделий.

Сенсорная поверхность устройства представляет собой стеклянную или изготовленную из синтетического материала пластину. С трех сторон прямоугольника пластины в её торцах находятся линейки светодиодов-излучателей инфракрасного диапазона, а в двух верхних углах размещены сенсоры-приемники инфракрасного излучения (рис. 11). При касании сенсорной поверхности пальцем или любым другим предметом пространственно-временное распределение принимаемого сенсорами излучения меняется за счет отражения, и координаты точки контакта рассчитываются контроллером. Возможно одновременное определение координат двух точек касания.

Система отличается коэффициентом светопроводности свыше 92 процентов, высокой разрешающей способностью, стабильностью в эксплуатации без необходимости в периодических калибровках. Недостатком можно считать сложность конструкции контроллера, приводящую к удорожанию системы в целом.

Как и другие варианты сенсорных приборов с линейками инфракрасных излучателей, данные панели применимы главным образом для дисплеев с большой диагональю экрана, начиная от 20 дюймов. На основе описанной технологии производятся как сенсорные системы, интегрированные с дисплеями, так и отдельные съемные сенсорные модули.

Оптические сенсорные системы на основе видеокамер

Сенсорные системы на основе видеокамер могут быть применены только при условии формирования оптического изображения методом обратной проекции, когда зритель и проектирующая аппаратура располагаются с противоположных сторон экрана. В этом случае видеоаппаратура инфракрасного диапазона (в простейшем случае единственная цифровая инфракрасная видеокамера), не реагирующая на видимое изображение, и источники инфракрасного излучения располагаются по ту же сторону экрана, что и система формирования основного оптического изображения в видимом диапазоне (рис.12).

Инфракрасное излучение свободно проходит через стекло экрана. В случае же касания экрана каким-либо предметом отраженное от него излучение воспринимается видеокамерой и обрабатывается программным обеспечением для вычисления координат отражающего объекта. Использование нескольких видеокамер позволяет повысить точность и надежность системы и реализовать некоторые дополнительные функции. В некоторых конструкциях отраженное инфракрасное излучение фиксирует не видеокамера, а матрица дополнительных (четвертых) пикселей жидкокристаллического экрана, чувствительных к инфракрасному диапазону.

К достоинствам систем описываемого типа относится отсутствие ухудшения качества основного изображения за счет нанесения на экран дополнительных слоев, возможность фиксации касаний как пальцем, так и любым предметом, равно как и нескольких касаний одновременно, минимальный объем переделок базового сенсора для работы с новым экраном. Недостатками являются высокая стоимость, непригодность для малых экранов, необходимость калибровки после монтажа и периодической настройки в дальнейшем.

Примером конкретной реализации системы описываемого типа является устройство Microsoft Surface, оснащенное пятью видеокамерами (рис 13). Эта система не только регистрирует прикосновения и движения соприкасающихся с экраном объектов, но и распознает их по нанесенным черно-белым меткам, используя зависимость коэффициента отражения инфракрасных лучей от цвета. Функция распознавания, в свою очередь, может использоваться для управления работой компьютера, например для запуска определенных элементов его программного обеспечения.

В новейших изделиях фирмы Microsoft, поставляемых с операционной системой Windows 10, недостатки устройства Microsoft Surface в значительной мере преодолены, а полезные функции существенно развиты – например, система воспроизводит подробное цветное изображение положенного на горизонтальный «сенсорный стол» предмета. Широкое распространение этой продукции может сделать неактуальным недавний тезис об ограниченности сферы применения устройств на основе инфракрасных видеосистем вследствие их дороговизны, больших габаритов, снижения популярности проекционных телевизоров.

Сенсорные дисплеи на основе акустических явлений

Акустические колебания также входят в перечень физических явлений, применяемых для создания сенсорных дисплеев. Хотя распространенность систем этой категории пока не сопоставима с показателями резистивных, емкостных или инфракрасных сенсорных устройств, данная технология перспективна, обладает рядом интересных особенностей и уже реализована в ряде промышленно выпускаемых моделей, что и определяет целесообразность её рассмотрения в этом обзоре.

Сенсорные системы на основе поверхностно-акустических волн

Работа систем этого типа основана на анализе картины распространения поверхностно-акустических волн (ПАВ) по стеклянной пластине, закрепляемой перед экраном. В двух углах пластины, находящихся на одной диагонали, размещены пьезоэлектрические преобразователи, генерирующие ультразвуковые колебания частотой в несколько мегагерц, в двух других углах – пьезоэлектрические преобразователи-приемники этих колебаний, преобразующие их в электрическую форму, а вдоль боковых сторон расположены линейки отражателей, направляющих акустическую волну к приемникам (рис. 14). Можно заметить, что компоновка измерительной системы несколько напоминает применяемую для систем на основе инфракрасного излучения.

Работа системы управляется контроллером, который подает электрический сигнал на пьезоизлучатели и анализирует электрический сигнал, формируемый приемниками. При отсутствии касания генерируемые ультразвуковые волны равномерно распределяются по площади пластины. При прикосновении к пластине пальцем или другим предметом часть энергии поверхностно-акустических волн поглощается этой помехой, и картина их распространения искажается. Воспринимая и анализируя эти искажения, контроллер вычисляет положение точки касания. Некоторые конструкции, выполненные по этой технологии, позволяют определить и силу нажима при касании.

Преимуществами технологии на основе поверхностно-акустических волн является высокая надежность (до десятков миллионов касаний в одной точке) и высокий коэффициент светопропускания, превышающий 90 процентов, т. к. на стеклянную пластину не наносятся никакие покрытия. В качестве недостатков следует указать ограниченную размерами пьезоэлементов разрешающую способность, чувствительность к загрязнению поверхности, вибрационным и шумовым помехам, что снижает возможность применения таких систем вне помещений. Не очень высокая разрешающая способность систем на основе ПАВ делает основной областью их применения устройства типа информационных киосков и терминалов для ввода небольших объемов данных.

В настоящее время серийно выпускаются несколько моделей устройств, выполненных по рассматриваемой технологии – это IntelliTouch, SecureTouch, iTouch и другие. Вследствие ограничений по разрешающей способности они используются в основном с большими дисплеями, с диагональю от 19 дюймов.

Технология распознавания акустических импульсов

Другой вариант использования акустических явлений для создания сенсорной панели, разработанный одним их пионеров отрасли − компанией Elo TouchSystems, − технология распознавания акустических импульсов APR (Acoustic Pulse Recognition).

Основой сенсорной панели, построенной по этой технологии, является стеклянная пластина. Физическая основа распознавания места касания заключается в том, что при касании сенсорной пластины создается уникальный звуковой импульс, характерный именно и только для данной точки. Эти звуковые импульсы распространяются по пластине и воспринимаются четырьмя закрепленными в её углах пьезоэлектрическими преобразователями. Преобразованные таким образом в электрическую форму отображения сигнала поступают в контроллер, где хранятся их зафиксированные предварительно эталонные значения для каждой точки. Сравнение поступившего сигнала с предварительно сформированной и записанной в контроллере матрицей эталонов позволяет однозначно определить точку прикосновения. Устройство сенсорной системы на основе технологии APR иллюстрирует рис 15.

При несовпадении полученного сигнала ни с одним из эталонных прикосновение не фиксируется. Благодаря этому уникальному свойству данной технологии она обеспечивает значительно большую, чем для других сопоставимых технических решений, защиту сенсорного устройства от внешних шумовых и вибрационных помех. Вместе с тем, этот метод гарантирует более высокую, чем для устройств, выполненных по технологии ПАВ, точность определения координат точки касания, при том, что касание может осуществляться как пальцем, так и любым другим предметом. Помимо хорошей помехоустойчивости, описываемая технология ПАВ обеспечивает использующим её устройствам и ряд других преимуществ:

  • высокий уровень светопропускания (свыше 90 процентов)
  • стабильность работы и большой срок сохранения работоспособности
  • нечувствительность к повреждениям и загрязнениям рабочей поверхности
  • нет необходимости в перекалибровках.

Дополнительным преимуществом является тот факт, что описываемое техническое решение характеризуется хорошей масштабируемостью, т.е. может применяться для сенсорных панелей с широким диапазоном размеров экрана, включая и миниатюрные устройства. Перечисленные преимущества делают данную технологию одной из наиболее перспективных, например, для создания платежных терминалов в разного рода торговых организациях и предприятиях общественного питания. Поставки промышленных изделий, построенных по технологии APR, начались в 2006 году и продолжают расширяться. В настоящий момент основная область их применения – разного рода цифровые киоски и платежные терминалы (POS-терминалы).

Сенсорные системы на основе применения ультразвуковых волн

При использовании этой технологии генератор и излучатель тестового ультразвукового сигнала вместе с источником питания и миниатюрным выключателем смонтированы в специальном тестовом стилусе в виде пера. Соприкосновение наконечника пера с поверхностью экрана вызывает срабатывание выключателя, вызывающему излучение в ультразвуковом диапазоне. Приемные датчики этого сигнала, установленные в верхних углах рамки дисплея (рис. 16), связаны с контроллером, который фиксирует момент приема сигнала каждым из датчиков. Поскольку время распространения тестового сигнала пропорционально расстоянию, разница моментов срабатывания датчиков позволяет однозначно определить положение точки контакта. Ошибка определения её координат порядка ± 0.5 мм. Схема может быть применена с экранами различных размеров, что требует лишь небольших изменений в настройках программы контроллера.

Преимуществами этой измерительной схемы являются простота реализации, при которой не вносится каких-либо изменений в исходную конструкцию дисплея, и как следствие этого − низкая себестоимость. Не создается помех, ухудшающих качество изображения. Основными недостатками можно считать требование применения в качестве стилуса только специального пера и ограниченную точность определения положения точки контакта. Это обстоятельство, равно как и потребность в закреплении приемников ультразвука на раме дисплея, приводит к неприменимости ультразвуковых сенсоров в малогабаритных устройствах.

Примером применения ультразвукового устройства сенсорного ввода в серийном изделии является планшет Samsung SyncMaster 720TD с 17-дюймовым жидкокристаллическим монитором (рис 17). Приемные датчики ультразвука, закрепленные в верхних углах монитора, оформлены как цилиндрические шайбы. Изделие позиционируется как весьма удобное для рисования и проведения презентаций. Для удобства презентаций предусмотрен специальный дополнительный видеовыход, предназначенный для дублирования изображения на любом экране большего размера (плазменном экране, экране проектора и т. п).

Технология электромагнитного резонанса

Данная технология, запатентованная японской компанией Wacom, основана на явлении электромагнитного резонанса между электромагнитным полем, создаваемым помещенными под поверхностью дисплея плоскими печатными катушками индуктивности, и резонансным контуром, помещенным в используемом в качестве стилуса специальном пере. Резонансный контур возбуждается при приближении к экрану, что приводит к деформации электромагнитного поля дисплея. Чем ближе перо к дисплею, тем сильнее искажение исходного поля, которое и несет информацию о месте и характере контакта. Перо не имеет собственного источника питания, однако не просто отражает полученную вследствие резонанса энергию, а формирует с её помощью ответный сигнал, передающий информацию от помещенных в перо дополнительных датчиков о его наклоне, типе наконечника, силе нажима и других параметрах, необходимых для создания на экране изображения высокого качества.

Поскольку возникновение электромагнитного резонанса не требует непосредственного контакта между резонирующим пером и рабочей поверхностью исходного поля (допустимый зазор примерно до 2 см), сенсорная панель может быть помещена за модулем ЖК-дисплея, что устраняет её негативное влияние на качество изображения.

Вследствие своей довольно высокой стоимости (возрастающей при увеличении размеров экрана) данная технология применяется главным образом в дорогих графических планшетах, в профессиональных системах графического моделирования, включая 3D-моделирование, и т.п. приложениях. Запатентовавшая данную технологию фирма Wacom выпустила первую модель на её основе в 1998 году (графический планшет Cintiq 18sx с ЖК-дисплеем).

В дальнейшем в продукции компании появились две линейки дисплеев с сенсорной панелью этого типа − Cintiq и PL, один из которых представлен на рис 18. Кроме сравнительно высокой стоимости, к недостаткам данной системы можно отнести следующее:

  • работа только со специальным пером
  • необходимость периодической калибровки
  • возможность создания электромагнитных помех, влияющих на соседнюю аппаратуру.

Однако использование этой технологии в некоторых современных электронных книгах, например PocketBook Pro 603, свидетельствует о возможности преодоления её недостатков и расширении сферы применения.

Тензометрические сенсорные экраны

В заключение обзора следует упомянуть тензометрические сенсорные экраны, фиксирующие деформации поверхности при нажатии. Они не обеспечивают высокой точности, зато отличаются прекрасной вандалоустойчивостью, стойкостью к перепадам температуры и высокой влажности, вследствие чего и используются главным образом в разного рода уличных автоматах.

Заключение
Подводя итог проведенному обзору принципов построения сенсорных дисплеев и их реализации в промышленных изделиях, можно отметить такую тенденцию развития этой отрасли, как продолжающееся расширение спектра используемых физических явлений и вариантов их реализации а конкретных конструкциях и категориях товаров (примером могут служить часы с сенсорным экраном). Интересна также тенденция к использованию комбинации нескольких принципов в одном изделии, примером чего может служить выпущенный в 2015 году смартфон фирмы Леново с встроенным лазерным проектором, создающим на произвольной поверхности виртуальную клавиатуру.

Используемые материалы:

Стекло, листовой полиэстер, проводящее покрытие.

Принцип действия :

  • Сенсорные элементы, заданные шаблоном, расположены на обратной стороне сенсорной подложки.
  • Измеряется уровень сигнала на каждом элементе.
  • Касание определяется путем сравнения уровней сигналов между смежными элементами.

Преимущества:

  • Может быть ламинирована или химически обработана для дополнительной защиты от повреждений.
  • Экраны в основном ламинируют для предотвращения разбивания на осколки.
  • Касания могут осуществляться пальцем, пальцем в перчатке или проводящим стилусом.
  • Светопередача 85%-90%.
  • Определение одновременного касания в 3-х и более точках.

Недостатки:

  • Более сложная электроника и конструкция экрана по сравнению с другими технологиями и, как следствие, более высокая стоимость.
  • Не поддерживает работу с непроводящими стилусами.

Инфракрасная Infrared (Grid) (IR)

Используемые материалы:

Стеклянная или акриловая подложка, рамка по периметру стекла, светодиодная матрица

Принцип действия:

Светодиоды создают сетку инфракрасных световых лучей по осям X и Y на поверхности экрана. Фотоприемники улавливают эти лучи на противоположной стороне экрана. Касание определяется когда палец или стилус блокирует луч и не позволяет ему достичь фотоприемников. Контроллер постоянно сканирует по осям X и Y и в момент касания определяет блокировку и вычисляет координату касания методом триангуляции.

Преимущества:

  • На работу экрана не влияют царапины и износ поверхности.
  • Касания осуществляются пальцем, рукой в перчатке, или толстым стилусом.
  • Светопередача 90% - 92%

Недостатки:

  • Крупные загрязнения, пролитые жидкости или какие-то препятствия на поверхности экрана могут приводить к ложным срабатываниям и создавать мертвые зоны.
  • Касания происходят слегка над поверхностью экрана, что может привести к непреднамеренному срабатыванию.
  • Требуется рамка защищающая светодиоды и фотоприемники.

Оптическая

Используемые матреиалы:

Стеклянная подложка, оптические сенсоры линейного сканирования, световые шины.

Принцип действия:

Миниатюрные камеры расположены в 2-ух верхних углах подложки. Подсвеченные или отражающие границы 3-х противоположных сторон проецируют однородное поле инфракрасного света немного выше поверхности стекла. Касание распознается благодаря перекрыванию пальцем или другим объектом светового потока от камер. Контроллер обрабатывает оптическую информацию и вычисляет координаты Х и Y.

Преимущества:

  • На работу экрана не влияют царапины
  • Нажатие осуществляется пальцем, рукой в перчатке или стилусом.
  • Масштабируемость
  • Светопередача более 90

Недостатки:

  • Пролитая жидкость или загрязнения поверхности могут вызвать ложные срабатывания или привести к неработоспособности экрана.
  • Для данного типа технологии требуется рамка для защиты камер в углах экрана
  • Защитная рамка приводит к увеличению толщины сенсорного экрана на 3,5 мм.
  • Нажатие срабатывает чуть ранее реального касания поверхности
  • Определение 2-ух точек касания осуществляется 2-я камерами, а 3-х и более точек касания - 4 камерами.

ПАВ (технология на поверхностно-акустических волнах)

Используемые материалы:

Стекло, пьезоэлектрические преобразователи

Принцип действия:

  • Пьезоэлектрические датчики установленные по углам стекла генерируют акустические волны по поверхности стеклянной подложки по осям Х и Y.
  • Акустические волны отражаются от специальных насечек на стекле, перенаправляя энергию в пьезоэлектрические приемники.
  • Касание поверхности сенсорного экрана вызывает уменьшение части волны в прямой зависимости от координат касания.
  • Касание определяется по времени задержки от переданного импульса до места затухания поверхностной волны.

Преимущества:

  • Касания могут осуществляться пальцем, некоторыми перчатками или мягким проводящим стилусом.
  • Светопередача более 90%.

Недостатки:

  • Жидкости или крупные загрязнения (пыль, грязь) могут вызвать ложные срабатывания или мертвые зоны на экране.
  • Требуется надежная защита от грязи и воды, что усложняет процесс сборки устройств
  • Широкий бордюр не позволяет интегрировать экран во многие модели мониторов.
  • Определяется только одна точка касания - отсутствие мультитач

Поверхностно-емкостная (ClearTek)

Используемые материалы:

Стеклянная подложка, Покрытие из прозрачного метталического оксида Glass substrate, transparent metal oxide coating

Принцип действия:

  • Напряжение прилагается к углам сенсорного экрана.
  • Электроды по периметру сенсорного экрана распределяют напряжение для создания однородного электрического поля через проводящую поверхность экрана.
  • В момент касания часть тока снимается с поверхности экрана и измеряется контроллером.
  • Относительная величина тока обратно пропорциональна растоянию от точки касания до углов экрана.
  • Пропорция токов от 4-х углов позволяет рассчитать координаты X и Y точки касания.

Преимущества:

  • Устойчивость к загрязнениям (грязь, пыль, жир и т.п) и жидкостям на поверхности экрана.
  • Срабатывание даже при легком касании экрана.
  • Самой быстрый отклик на нажатие среди сенсорных технологий.
  • Светопередача 88% - 92%.

Недостатки:

  • Поддерживает только касания пальцем (без перчаток) или стилусом подключенным к котроллеру.
  • Сильные царапины могут повлять на работоспособность экрана.
  • Определяется только одно касание - отсутствие мультитач.


Просмотров