Применение правил в математике: двоичная система счисления – перевод чисел. Перевод чисел в различные системы счисления с решением

Результат уже получен!

Системы счисления

Существуют позиционные и не позиционные системы счисления. Арабская система счисления, которым мы пользуемся в повседневной жизни, является позиционной, а римская − нет. В позиционных системах счисления позиция числа однозначно определяет величину числа. Рассмотрим это на примере числа 6372 в десятичном системе счисления. Пронумеруем это число справа налево начиная с нуля:

Тогда число 6372 можно представить в следующем виде:

6372=6000+300+70+2 =6·10 3 +3·10 2 +7·10 1 +2·10 0 .

Число 10 определяет систему счисления (в данном случае это 10). В качестве степеней взяты значения позиции данного числа.

Рассмотрим вещественное десятичное число 1287.923. Пронумеруем его начиная с нуля позиции числа от десятичной точки влево и вправо:

Тогда число 1287.923 можно представить в виде:

1287.923 =1000+200+80 +7+0.9+0.02+0.003 = 1·10 3 +2·10 2 +8·10 1 +7·10 0 +9·10 -1 +2·10 -2 +3·10 -3 .

В общем случае формулу можно представить в следующем виде:

Ц n ·s n +Ц n-1 ·s n-1 +...+Ц 1 ·s 1 +Ц 0 ·s 0 +Д -1 ·s -1 +Д -2 ·s -2 +...+Д -k ·s -k

где Ц n -целое число в позиции n , Д -k - дробное число в позиции (-k), s - система счисления.

Несколько слов о системах счисления.Число в десятичной системе счисления состоит из множества цифр {0,1,2,3,4,5,6,7,8,9}, в восьмеричной системе счисления - из множества цифр {0,1,2,3,4,5,6,7}, в двоичной системе счисления - из множества цифр {0,1}, в шестнадцатеричной системе счисления - из множества цифр {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, где A,B,C,D,E,F соответствуют числам 10,11,12,13,14,15.В таблице Таб.1 представлены числа в разных системах счисления.

Таблица 1
Система счисления
10 2 8 16
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Перевод чисел из одной системы счисления в другую

Для перевода чисел с одной системы счисления в другую, проще всего сначала перевести число в десятичную систему счисления, а затем, из десятичной системы счисления перевести в требуемую систему счисления.

Перевод чисел из любой системы счисления в десятичную систему счисления

С помощью формулы (1) можно перевести числа из любой системы счисления в десятичную систему счисления.

Пример 1. Переводить число 1011101.001 из двоичной системы счисления (СС) в десятичную СС. Решение:

1 ·2 6 +0 ·2 5 +1 ·2 4 +1 ·2 3 +1 ·2 2 +0 ·2 1 +1 ·2 0 +0 ·2 -1 +0 ·2 -2 +1 ·2 -3 =64+16+8+4+1+1/8=93.125

Пример 2. Переводить число 1011101.001 из восьмеричной системы счисления (СС) в десятичную СС. Решение:

Пример 3 . Переводить число AB572.CDF из шестнадцатеричной системы счисления в десятичную СС. Решение:

Здесь A -заменен на 10, B - на 11, C - на 12, F - на 15.

Перевод чисел из десятичной системы счисления в другую систему счисления

Для перевода чисел из десятичной системы счисления в другую систему счисления нужно переводить отдельно целую часть числа и дробную часть числа.

Целую часть числа переводится из десятичной СС в другую систему счисления - последовательным делением целой части числа на основание системы счисления (для двоичной СС - на 2, для 8-ичной СС - на 8, для 16-ичной - на 16 и т.д.) до получения целого остатка, меньше, чем основание СС.

Пример 4 . Переведем число 159 из десятичной СС в двоичную СС:

159 2
158 79 2
1 78 39 2
1 38 19 2
1 18 9 2
1 8 4 2
1 4 2 2
0 2 1
0

Как видно из Рис. 1, число 159 при делении на 2 дает частное 79 и остаток 1. Далее число 79 при делении на 2 дает частное 39 и остаток 1 и т.д. В результате построив число из остатков деления (справа налево) получим число в двоичной СС: 10011111 . Следовательно можно записать:

159 10 =10011111 2 .

Пример 5 . Переведем число 615 из десятичной СС в восьмеричную СС.

615 8
608 76 8
7 72 9 8
4 8 1
1

При приведении числа из десятичной СС в восьмеричную СС, нужно последовательно делить число на 8, пока не получится целый остаток меньшее, чем 8. В результате построив число из остатков деления (справа налево) получим число в восьмеричной СС: 1147 (см. Рис. 2). Следовательно можно записать:

615 10 =1147 8 .

Пример 6 . Переведем число 19673 из десятичной системы счисления в шестнадцатеричную СС.

19673 16
19664 1229 16
9 1216 76 16
13 64 4
12

Как видно из рисунка Рис.3, последовательным делением числа 19673 на 16 получили остатки 4, 12, 13, 9. В шестнадцатеричной системе счисления числе 12 соответствует С, числе 13 - D. Следовательно наше шестнадцатеричное число - это 4CD9.

Для перевода правильных десятичных дробей (вещественное число с нулевой целой частью) в систему счисления с основанием s необходимо данное число последовательно умножить на s до тех пор, пока в дробной части не получится чистый нуль, или же не получим требуемое количество разрядов. Если при умножении получится число с целой частью, отличное от нуля, то эту целую часть не учитывать (они последовательно зачисливаются в результат).

Рассмотрим вышеизложенное на примерах.

Пример 7 . Переведем число 0.214 из десятичной системы счисления в двоичную СС.

0.214
x 2
0 0.428
x 2
0 0.856
x 2
1 0.712
x 2
1 0.424
x 2
0 0.848
x 2
1 0.696
x 2
1 0.392

Как видно из Рис.4, число 0.214 последовательно умножается на 2. Если в результате умножения получится число с целой частью, отличное от нуля, то целая часть записывается отдельно (слева от числа), а число записывается с нулевой целой частью. Если же при умножении получиться число с нулевой целой частью, то слева от нее записывается нуль. Процесс умножения продолжается до тех пор, пока в дробной части не получится чистый нуль или же не получим требуемое количество разрядов. Записывая жирные числа (Рис.4) сверху вниз получим требуемое число в двоичной системе счисления: 0.0011011 .

Следовательно можно записать:

0.214 10 =0.0011011 2 .

Пример 8 . Переведем число 0.125 из десятичной системы счисления в двоичную СС.

0.125
x 2
0 0.25
x 2
0 0.5
x 2
1 0.0

Для приведения числа 0.125 из десятичной СС в двоичную, данное число последовательно умножается на 2. В третьем этапе получилось 0. Следовательно, получился следующий результат:

0.125 10 =0.001 2 .

Пример 9 . Переведем число 0.214 из десятичной системы счисления в шестнадцатеричную СС.

0.214
x 16
3 0.424
x 16
6 0.784
x 16
12 0.544
x 16
8 0.704
x 16
11 0.264
x 16
4 0.224

Следуя примерам 4 и 5 получаем числа 3, 6, 12, 8, 11, 4. Но в шестнадцатеричной СС числам 12 и 11 соответствуют числа C и B. Следовательно имеем:

0.214 10 =0.36C8B4 16 .

Пример 10 . Переведем число 0.512 из десятичной системы счисления в восьмеричную СС.

0.512
x 8
4 0.096
x 8
0 0.768
x 8
6 0.144
x 8
1 0.152
x 8
1 0.216
x 8
1 0.728

Получили:

0.512 10 =0.406111 8 .

Пример 11 . Переведем число 159.125 из десятичной системы счисления в двоичную СС. Для этого переведем отдельно целую часть числа (Пример 4) и дробную часть числа (Пример 8). Далее объединяя эти результаты получим:

159.125 10 =10011111.001 2 .

Пример 12 . Переведем число 19673.214 из десятичной системы счисления в шестнадцатеричную СС. Для этого переведем отдельно целую часть числа (Пример 6) и дробную часть числа (Пример 9). Далее объединяя эти результаты получим.

Запишите число в двоичной системе счисления, а степени двойки справа налево. Например, мы хотим преобразовать двоичное число 10011011 2 в десятичное. Сначала запишем его. Затем запишем степени двойки справа налево. Начнем с 2 0 , что равно "1". Увеличиваем степень на единицу для каждого следующего числа. Останавливаемся, когда число элементов в списке равно числу цифр в двоичном числе. Наше число для примера, 10011011, включает в себя восемь цифр, поэтому список из восьми элементов будет выглядеть так: 128, 64, 32, 16, 8, 4, 2, 1

Запишите цифры двоичного числа под соответствующими степенями двойки. Теперь просто запишите 10011011 под числами 128, 64, 32, 16, 8, 4, 2, и 1, с тем чтобы каждая двоичная цифра соответствовала своей степени двойки. Самая правая "1" двоичного числа должна соответствовать самой правой "1" из степеней двоек, и так далее. Если вам удобнее, вы можете записать двоичное число над степенями двойки. Самое важное – чтобы они соответствовали друг другу.

Соедините цифры в двоичном числе с соответствующими степенями двойки. Нарисуйте линии (справа налево), которые соединяют каждую последующую цифру двоичного числа со степенью двойки, находящейся над ней. Начните построение линий с соединения первой цифры двоичного числа с первой степенью двойки над ней. Затем нарисуйте линию от второй цифры двоичного числа ко второй степени двойки. Продолжайте соединять каждую цифру с соответствующей степенью двойки. Это поможет вам визуально увидеть связь между двумя различными наборами чисел.

Запишите конечное значение каждой степени двойки. Пройдитесь по каждой цифре двоичного числа. Если эта цифра 1, запишите соответствующую степень двойки под цифрой. Если эта цифра 0, запишите под цифрой 0.

  • Так как "1" соответствует "1", она остается "1". Так как "2" соответствует "1", она остается "2". Так как "4" соответствует "0", она становится "0". Так как "8" соответствует "1", она становится "8", и так как "16" соответствует "1" она становится "16". "32" соответствует "0" и становится "0", "64" соответствует "0" и поэтому становится "0", в то время как "128" соответствует "1" и становится 128.
  • Сложите получившиеся значения. Теперь сложите получившиеся под линией цифры. Вот что вы должны сделать: 128 + 0 + 0 + 16 + 8 + 0 + 2 + 1 = 155. Это десятичный эквивалент двоичного числа 10011011.

    Запишите ответ вместе с нижним индексом, равным системе счисления. Теперь все, что вам осталось сделать – это записать 155 10 , чтобы показать, что вы работаете с десятичным ответом, который оперирует степенями десятки. Чем больше вы будете преобразовывать двоичные числа в десятичные, тем проще вам будет запомнить степени двойки, и тем быстрее вы сможете выполнять данную задачу.

  • Используйте данный метод, чтобы преобразовать двоичное число с десятичной точкой в десятичную форму. Вы можете использовать данный метод даже если вы хотите преобразовать двоичное число, такое как 1.1 2 в десятичное. Все, что вам необходимо знать – это то, что число в левой части десятичного числа – это обычное число, а число в правой части десятичного числа – это число "делений надвое", или 1 x (1/2).

    • "1" слева от десятичного числа соответствует 2 0 , или 1. 1 справа от десятичного числа соответствует 2 -1 , или.5. Сложите 1 и.5 и вы получите 1.5, которое является эквивалентом 1.1 2 в десятичном виде.
  • В одном из наших материалов мы рассмотрели определение . Оно имеет самый короткий алфавит. Только две цифры: 0 и 1. Примеры алфавитов позиционных систем счисления приведены в таблице.

    Позиционные системы счисления

    Название системы

    Основание

    Алфавит

    Двоичная

    Троичная

    Четверичная

    Пятеричная

    Восьмеричная

    Десятичная

    0,1,2,3,4,5,6,7,8,9

    Двенадцатеричная

    0,1,2,3,4,5,6,7,8,9,А,В

    Шестнадцатеричная

    0,1,2,3,4,5,6,7,8,9,А,В,С,D,E,F

    Тридцатишестиричная

    0,1,2,3,4,5,6,7,8,9,А,В,С,D,E,F,G, H,I,J,K,L,M,N,O,P,R,S,T,U,V,X,Y,Z


    Для перевода небольшого числа из десятичного в двоичное, и обратно, лучше пользоваться следующей таблицей.

    Таблица перевода десятичных чисел от 0 до 20 в двоичную систему счисления.

    десятичное

    число

    двоичное число

    десятичное

    число

    двоичное число


    Однако таблица получится огромной, если записать туда все числа. Искать среди них нужное число будет уже сложнее. Гораздо проще запомнить несколько алгоритмов перевода чисел из одной позиционной системы счисления в другую.


    Как сделать перевод из одной системы счисления в другую? В информатике существует несколько простых способов перевода десятичных чисел в двоичные числа. Рассмотрим два из них.

    Способ №1.

    Допустим, требуется перевести число 637 десятичной системы в двоичную систему.


    Делается это следующим образом: отыскивается максимальная степень двойки, чтобы два в этой степени было меньше или равно исходному числу.


    В нашем случае это 9, т.к. 2 9 =512 , а 2 10 =1024 , что больше нашего начального числа. Таким образом, мы получили число разрядов результата. Оно равно 9+1=10. Значит, результат будет иметь вид 1ххххххххх, где вместо х может стоять 1 или 0.


    Найдем вторую цифру результата. Возведем двойку в степень 9 и вычтем из исходного числа: 637-2 9 =125. Затем сравниваем с числом 2 8 =256 . Так как 125 меньше 256, то девятый разряд будет 0, т.е. результат уже примет вид 10хххххххх.


    2 7 =128 > 125 , значит и восьмой разряд будет нулём.


    2 6 =64 , то седьмой разряд равен 1. 125-64=61 Таким образом, мы получили четыре старших разряда и число примет вид 10011ххххх.


    2 5 =32 и видим, что 32 < 61, значит шестой разряд равен 1 (результат 100111хххх), остаток 61-32=29.


    2 4 =16 < 29 - пятый разряд 1 => 1001111ххх. Остаток 29-16=13.


    2 3 =8 < 13 => 10011111хх. 13-8=5


    2 2 =4 < 5 => 10011111хх, остаток 5-4=1.


    2 1 =2 > 1 => 100111110х, остаток 2-1=1.


    2 0 =1 => 1001111101.


    Это и будет конечный результат.

    Способ №2.

    Правило перевода целых десятичных чисел в двоичную систему счисления, гласит:

    1. Разделим a n−1 a n−2 ...a 1 a 0 =a n−1 ⋅2 n−1 +a n−2 ⋅2 n−2 +...+a 0 ⋅2 0 на 2.
    2. Частное будет равно an−1 ⋅2n−2+...+a1 , а остаток будет равен
    3. Полученное частное опять разделим на 2, остаток от деления будет равен a1.
    4. Если продолжить этот процесс деления, то на n-м шаге получим набор цифр: a 0 ,a 1 ,a 2 ,...,a n−1 , которые входят в двоичное представление исходного числа и совпадают с остатками при его последовательном делении на 2.
    5. Таким образом, для перевода целого десятичного числа в двоичную систему счисления нужно последовательно выполнять деление данного числа и получаемых целых частных на 2 до тех пор, пока не получим частное, которое будет равно нулю.

    Исходное число в двоичной системе счисления составляется последовательной записью полученных остатков. Записывать его начинаем с последнего найденного.


    Переведём десятичное число 11 в двоичную систему счисления. Рассмотренную выше последовательность действий (алгоритм перевода) можно изобразить так:


    Получили 11 10 =1011 2 .

    Пример:

    Если десятичное число достаточно большое, то более удобен следующий способ записи рассмотренного выше алгоритма:



    363 10 =101101011 2



    Фраза о том, что все новое - это не что иное, как хорошо забытое старое, в полной мере относится к Оказывается, что еще в древнем Китае уже применяли нечто, напоминающее наши «единичка-нолик», правда не для арифметики, а для написания текстов книги Перемен. Ближе всех к пониманию разных систем счисления были инки: они использовали и десятичную, и двоичную системы, правда, последнюю только для текстовых и кодированных сообщений. Можно предположить, что уже тогда, 4 тыс. лет назад, инки знали, как делается перевод из двоичной в десятичную систему.

    Современный вариант был предложен Лейбницем всего-то около 300 лет назад, а спустя еще полтора века оставил свое имя в памяти потомков работой по алгебре логики. Двоичная арифметика совместно с алгеброй логики стала фундаментом нынешней цифровой техники. А началось все в 1937 году, когда был предложен метод символического анализа релейных и переключательных схем. Эта работа Клода Шенона стала «мамой» для релейного компьютера, выполнявшего двоичное сложение уже в 1937 году. И, конечно же, одной из задач этого «прадедушки» современных компьютеров был перевод из двоичной в десятичную систему.

    Прошло всего три года и очередная модель релейного «компьютера» посылала команды калькулятору используя телефонную линию и телетайп - ну прямо древний интернет в действии.

    Что же представляют собой двоичная, десятичная, шестнадцатеричная и, вообще говоря, любая N-ичная система? Да ничего сложного. Возьмем трехзначное число в нашей любимой десятичной системе, оно изображается при помощи 10 знаков - от 0 до 9 с учетом их расположения. Определимся, что цифры этого числа находятся на позициях 0, 1, 2 (порядок идет от последней цифры к первой). На каждой из позиций может находиться любое из чисел системы, однако величина этого числа определяется не только его начертанием, но и местом положения. Например, для числа 365 (соответственно, позиция 0 - цифра 5, позиция 1 - цифра 6, и позиция 2 - цифра 3) значение числа на нулевой позиции - просто 5, на первой позиции - 6*10, и на второй - 3*10*10. Здесь любопытно, что начиная с первой позиции, число содержит значащую цифру (от 0 до 9) и основание системы в степени равной номеру позиции, т.е. можно записать, что 345 = 3*10*10 + 6*10 +3 = 3*102 + 6*101 + 5*100.

    Еще пример:

    260974 = 2*105 + 6*104 + 0*103 + 9*102 + 7*101 + 4*100.

    Как видим, каждое позиционное место содержит значащее число из набора данной системы, и множитель из основания системы в степени равной позиции данного числа (разрядность числа это есть количество позиций, но на +1 больше).

    С точки зрения представления числа, его двоичная форма озадачивает своей простотой - только 2 числа в системе - 0 и 1. Но красота математики в том, что даже в усеченном виде, как может показаться, двоичные числа такие же полноценные и равноправные, как и их более «рослые товарищи». Но как же их сравнивать, например, с десятичным числом? Как вариант, нужно сделать, и не торопясь, перевод из двоичной в десятичную. Задачу не назовешь трудной, но эта кропотливая работа требует внимания. Итак, начнем.

    Исходя из сказанного выше о порядке представления чисел в любой системе, и имея в виду простейшую из них - двоичную, возьмем любую последовательность «единичек-ноликов». Назовем это число VO (по-русски ВО), и попробуем узнать, что это такое - перевод из двоичной в десятичную систему. Пусть это будет VO=11001010010. На первый взгляд, число как число. Посмотрим!

    В первой строке расположим само число в растянутом виде, а вторую распишем как сумму каждой позиции в виде сомножителей - значащей цифры (здесь выбор небольшой - 0 или 1) и числа 2 в степени, равной позиционному числу в десятичной системе, мы же делаем перевод из двоичной в десятичную. Теперь во второй строке нужно просто выполнить вычисления. Для наглядности можно дописать еще и третью строку с промежуточными вычислениями.

    VO = 1 1 0 0 1 0 1 0 0 1 0;

    VO = 1*210 + 1*29 + 0*28 + 0*27 + 1*26 + 0*25 + 1*24 + 0*23 + 0*22 + 1*21 + 0*20;

    VO=1*1024 + 1*512+0*256+0*128+ 1*64 + 0*32 + 1*16 + 0*8 +0*4 + 1*2 + 0*1.

    Вычисляем «арифметику» в третьей строке и имеем то, что искали: VO = 1618. Ну и что же тут замечательного? А то, что это число - самое знаменитое из всех, которые известны людям: с ним связаны пропорции египетских пирамид, знаменитой Джоконды, музыкальных нот и человеческого тела, но… Но с небольшим уточнением - зная, что хорошего должно быть много, его величество случай дал нам это число в 1000 раз больше настоящего значения - 1,618. Наверное, чтобы всем досталось. А попутно перевод из двоичной системы в десятичную помог из бесконечного моря чисел «выловить» самое замечательное - его еще называют «золотая пропорция».

    Большинство людей на нашей планете при счете пользуются десятичной системой счисления, а вот в компьютерах используется двоичная. Некоторые племена на заре развития человечества использовали двенадцатеричную и шестидесятеричную. Именно от них нам остались 12 часов на циферблате и 60 минут в часу.

    Порою необходимо перевести число из одной системы в другую. В этой статье рассмотрим конкретнее, как переводить в десятичную систему из некоторых других популярных систем.

    Принцип построения числа из цифр

    Прежде всего нужно понять, что такое система счисления и её основание. Система счисления - способ представления чисел в виде комбинации тех или иных цифр. Основание системы - количество цифр, в ней использующихся. Например, в десятичной системе с основанием 10 всего 10 цифр - от 0 до 9. В шестнадцатеричной, соответственно, 16 цифр, для обозначения которых используются арабские цифры 0 - 9 и латинские буквы A - F вместо цифр 10 - 15. Например, 2F7BE 16 - число шестнадцатеричной системы. При такой записи нижним индексом обозначается основание системы счисления. Ключевым различием между системами с разными основаниями является "ценность" числа 10. В шестнадцатеричной системе 10 16 будет равно 16 10 , а в двоичной 10 2 равно всего лишь двум. 100 16 будет вычисляться как

    100 16 = 10 16 * 10 16 = 16 10 * 16 10 = 256 10 .

    Следует также различать понятия "цифра" и "число". Цифра обозначается одним символом, а число - может и несколькими. Например, число 9 10 в двоичной системе будет выглядеть как 1001 2 , а цифра 9 в двоичной системе не существует как таковая.

    Алгоритм перевода

    Чтобы перевести в десятичную систему число, нужно научиться применять несложный алгоритм.

    1. Определить основание системы счисления. Оно обозначается нижним индексом после числа, к примеру, в числе 2F7BE 16 основание равно 16.
    2. Каждую цифру числа умножить на основание в степени, равной номеру цифры справа налево, начиная с нуля. В числе 2F7BE 16 Е (равное 14) умножается на 16 в нулевой степени, В (цифра 11) - на 16 в первой степени и так далее: 2F7BE 16 = 2*16 4 +15*16 3 + 7*16 2 + 11*16 1 + 14*16 0 .
    3. Сложить полученные результаты.

    2*16 4 +15*16 3 + 7*16 2 + 11*16 1 + 14*16 0 = 194494 10 .

    Рассмотрим на примерах, как самые популярные - шестнадцатеричную, восьмеричную и двоичную системы перевести в десятичную.

    • 5736 8 = 5*8 3 + 7*8 2 + 3*8 1 + 6*8 0 = 3038 10
    • 1001011 2 = 1*2 6 + 0*2 5 + 0*2 4 + 1*2 3 + 0*2 2 + 1*2 1 + 1*2 0 = 75 10
    • 2F7BE 16 = 2*16 4 +15*16 3 + 7*16 2 + 11*16 1 + 14*16 0 = 194494 10

    Разумеется, считать каждый раз вручную неудобно, нерационально, да и неохота. Существует множество калькуляторов, умеющих переводить числа из системы в систему. К примеру, стандартный калькулятор Windows в режиме "Программист" (клавиши Alt+3 или меню "Вид") может работать с системами оснований 2, 8, 10 и 16.



    Просмотров