Генератор с самовозбуждением и размагничивающей обмоткой

Генератор с самовозбуждением

Генератор качающейся частоты – это генератор, который вырабатывает электрические колебания. Генератор в переводе с латинского языка означает «производитель», т. е. это устройство, которое производит определенный продукт. Колебания в нем не затухают при подаче части переменного напряжения с выхода на вход генератора. В радиотехнике его называют осциллятором – системой, возбуждающей колебания относительно какого-нибудь положения равновесия.

Генератор с самовозбуждением представляет собой устройство, благодаря которому энергия постоянного тока преобразуется в энергию электромагнитных колебаний, возникающих без внешнего воздействия.

Структура такого генератора содержит два основных звена. Это звено обратной связи с коэффициентом передачи и усилительное звено.

К самовозбуждению генератор подталкивает положительная обратная связь, которая позволяет генератору перейти в режим установившихся колебаний.

При включении напряжения питания в генераторе возникают малые колебания. На них влияет положительная обратная связь, действие которой увеличивается за счет усилительного каскада. Колебания передаются по цепи положительной обратной связи на выход усилителя. Сигнал постоянно возрастает при обходе усилителя и обратной связи, пока не устанавливается режим колебаний. Переход к такому режиму возможен за счет уменьшения наклона амплитуды сигнала. Усилитель должен быть нелинейным, потому что линейное звено способствовало бы возрастанию амплитуды самовозбужденных колебаний.

Генератор производит, как правило, одночастотное колебание, а нагрузкой является параллельный колебательный контур. Сопротивление контура активно, на резонансной частоте максимально.

В усилительном звене генератора применяются операционные усилители и транзисторы, биполярные и полевые. Частоту производящихся колебаний определяет баланс амплитуд на определенной частоте, в связи с соответствием усилителя с резонансной нагрузкой резонансной же частоте контура.

От выбранного рабочего режима для генератора с самовозбуждением зависит процесс генерации колебаний. Режим определяется коэффициентом обратной связи и питающим напряжением. При выборе режима важно обращать внимание на положение рабочей точки на усилительном элементе, зависящей от напряжения смещения. Самовозбуждение легко возникает при расположении рабочей точки в области большой крутизны. Обратное положение рабочей точки приостанавливает, затрудняет самовозбуждение генератора. Существует два режима возбуждения: жесткий и мягкий. При жестком режиме рабочая точка смещается в левую сторону, напряжение смещения отсутствует. В результате этого небольшие колебания контура не могут вызвать самовозбуждение. Мягкий режим возникает тогда, когда рабочая точка лежит на прямолинейном участке усилительного элемента.

Процесс самовозбуждения проходит беспрепятственно, увеличивается амплитуда тока базы и в то же время возрастает амплитуда выходного напряжения.

Для эксплуатации генератора с самовозбуждением необходимо использовать оба перечисленных режима возбуждения, т. е. комбинированную схему смещения. В момент включения удобен мягкий режим, но в дальнейшем он приводит к большим потерям в схеме генератора, поэтому после установления мягкого надо перейти к жесткому режиму.

Одним из главнейших параметров генератора с самовозбуждением считается стабильность частоты. Ее количественной оценкой выступает обратная величина. Эта обратная величина представляет собой относительную нестабильность частоты. Под влиянием дестабилизирующих факторов параметры генератора меняются, в результате чего изменяются и фазовые углы. Любопытно, что после этой операции в генераторе устанавливается другой стационарный режим колебаний и сумма фазовых углов снова соответствует соотношению.

Повысить стабильность, так необходимую генератору с самовозбуждением, можно с помощью нескольких приемов. Путем параметрической стабилизации – при поддержке постоянства колебательной системы и нужных параметров генератора. Для осуществления такой стабилизации необходимо поддерживать постоянство питающих напряжений и защищать колебательную систему от влияния внешних воздействий. Повысить стабильность можно и другим путем. Для этого необходимо выбрать такие схему и режим работы генератора, при которых фазовые углы изменялись бы незначительно. Еще один вариант повышения стабильности заключается в компенсации изменений температуры элементов генератора, причем они должны быть противоположными другим изменениям по своему характеру. Этим элементом может быть колебательный контур, который увеличивается с повышением температуры. И, наконец, последний способ добиться стабилизации – с использованием кварцевых резонаторов, которые обладают высокой стабильностью как колебательные системы.

Существуют синхронные генераторы с самовозбуждением серии SJ, которые предназначаются для долгого режима работы как источник переменного тока. Они работают в составе передвижных и стационарных агрегатов. Такие генераторы могут работать автономно, параллельно с другими генераторами, а также с жесткой сетью.

Двигатели внутреннего сгорания, электродвигатели и различные турбины используются в качестве привода такого генератора.

Генератор с самовозбуждением применяется в радиопередающих устройствах, где он генерирует энергию постоянного и переменного тока в энергию радиочастотных колебаний.

Условия самовозбуждения генератора.

В генераторах с самовозбуждением, а к ним относится и генератор параллельного возбуждения, обмотки возбуждения получают питание непосредственно от якоря самого генератора, при этом посторонний источник питания им не требуется.

Самовозбуждение генератора возможно при выполнении трех условий:

1) наличие потока остаточного намагничивания полюсов Ф ост;

2) согласное направление магнитного потока остаточного намагничивания и магнитного потока, создаваемого обмоткой возбуждения генератора;

3) сопротивление цепи возбуждения r в должно быть ниже некоторого критического значения, а частота вращения должна быть не ниже номинального значения.

В электрической машине практически всегда существует небольшой, порядка (2…5)% от номинального, поток остаточного намагничивания. Если в генераторе такой поток отсутствует, то необходимо его намагнитить, пропустив ток по обмотке возбуждения от постороннего источника.

Если привести якорь генератора во вращение с частотой, равной номинальной, то под действием потока остаточного намагничивания в обмотке якоря возникает небольшая ЭДС E ост =с е nФ ост равная (2…5)% от U н.

Под действием этой ЭДС по цепи возбуждения потечет ток, который создает добавочный поток намагничивания Ф доб. Ток, создающий Ф доб, равен

где r в =r рв +r шо; r рв — сопротивление регулировочного реостата; r шо — сопротивление параллельной обмотки возбуждения; r а — сопротивление цепи якоря.

В зависимости от направления тока I в в обмотке возбуждения поток Ф доб может быть направлен либо встречно относительно Ф оcт, либо согласно с ним. При встречном направлении Ф ост и Ф доб процесс самовозбуждения идти не будет, т.к. не выполняется второе условие. В этом случае необходимо поменять направление тока I в, переключив концы питания обмотки возбуждения. Если потоки направлены согласно, то развивается процесс самовозбуждения, который можно представить в виде следующий логической схемы

При выполнении двух первых условий процесс самовозбуждения будет развиваться до определенного предела. Этот предел зависит от сопротивления цепи возбуждения r в, вида ее вольт-амперной характеристики и вида характеристики холостого хода. На рисунке-1., представлены характеристики холостого хода (1) при частоте вращения генератора n 1 , и (2) при частоте вращения n 2 >n 1 , и вольтамперные характеристики цепи возбуждения генератора (3-6) при различных углах a.

Рисунок-1 – Условия самовозбуждения генератора параллельного возбуждения

Определим предел, до которого идет процесс самовозбуждения. При этом считаем, что генератор работает на холостом ходу, т.е. I=0.

При самовозбуждении I в ≠const и следовательно уравнение ЭДС может быть написано в двух вариантах следующим образом

где U в — напряжения возбуждения, равные изменяющемуся напряжению U на генераторе; I в — ток возбуждения; r в — сопротивление цепи возбуждения; L в — индуктивность цепи возбуждения.

Так как r в =const, то напряжение I в r в изменяется прямо пропорционально току I в. Графически эта зависимость выражается прямой (3) (рисунок — 1), выходящей из начала координат под углом a, причем

следовательно, каждому значению r в соответствует определенная характеристика цепи возбуждения, выходящая из начала координат под углом, определяемым формулой.

При работе генератора на холостом ходу ток I в мал, поэтому можно считать, что I a r a ≈0, тогда из уравнения равновесия ЭДС следует, что U=E a и зависимость изменения напряжения на зажимах генератора определяется характеристикой холостого хода (кривая I). Отрезки ординат между кривой 1 и линией 3 дают разность

и служат мерой интенсивности происходящего процесса самовозбуждения, т.е. скорости изменения тока возбуждения. Очевидно, что этот процесс окончится тогда, когда разность

станет равной нулю, т.е. установившееся значение тока I в определяется точкой А пересечения характеристик 1 и 3.

Если увеличить r в, то вольтамперная характеристика пойдет круче и примет положение 4. Процесс самовозбуждения в этом случае замедляется и заканчивается в точке А 1 при меньшем напряжении на генераторе. При дальнейшем увеличении r в получим прямую 5, каса­тельную к начальной части характеристики холостого хода. Значение r в, соответствующее прямой 5, называется критическим (r вкр). При сопротивлении цепи обмотки возбуждения, равной и большей r вкр (кривая 6) генератор практически не возбуждается.

Если изменять частоту вращения генератора, то вид характеристики холостого хода меняется (кривая 2), следовательно, величина критического сопротивления r вкр зависит также от частоты вращения генератора. Большей частоте вращения генератора соответствует большее значение критического сопротивления r вкр.

Магнитное поле генератора с независимым возбуждением создается током, подаваемым от постороннего источника энергии в обмотку возбуждения полюсов. Схема генератора с независимым возбуждением показана на рис. 11.6. Магнитное поле генераторов с независимым возбуждением может создаваться от постоянных магнитов (рис. 11.7).

Рис. 11.6 Рис. 11.7

Зависимость ЭДС генератора от тока возбуждения называется характеристикой холостого хода E = U хх = f (I в). Характеристику холостого хода получают при разомкнутой внешней цепи (I я) и при постоянной частоте вращения (n 2 = const) Характеристика холостого хода генератора показана на рис. 11.8. Из-за остаточного магнитного потока ЭДС генератора не равна нулю при токе возбуждения, равном нулю. При увеличении тока возбуждения ЭДС генератора сначала возрастает пропорционально. Соответствующая часть характеристики холостого хода будет прямолинейна. Но при дальнейшем увеличении тока возбуждения происходит магнитное насыщение машины, отчего кривая будет иметь изгиб. При последующем возрастании тока возбуждения ЭДС генератора почти не меняется. Если уменьшать ток возбуждения, кривая размагничивания не совпадает с кривой намагничивания из-за явления гистерезиса. Зависимость напряжения на внешних зажимах машины от величины тока нагрузки U = f (I) при токе возбуждения I в = const называют внешней характеристикой генератора.

Внешняя характеристика генератора изображена на рис. 11.9.

Рис. 11.8 Рис. 11.9

С ростом тока нагрузки напряжение на зажимах генератора уменьшается из-за увеличения падения напряжения в якорной обмотке.

Генераторы с самовозбуждением. Принцип самовозбуждения генератора с параллельным возбуждением

Недостатком генератора с независимым возбуждением является необходимость иметь отдельный источник питания. Но при определенных условиях обмотку возбуждения можно питать током якоря генератора. Самовозбуждающиеся генераторы имеют одну из трех схем: с параллельным, последовательным и смешанным возбуждением. На рис. 11.10 изображен генератор с параллельным возбуждением.

Обмотка возбуждения подключена параллельно якорной обмотке. В цепь возбуждения включен реостат R в. Генератор работает в режиме холостого хода. Чтобы генератор самовозбудился, необходимо выполнение определенных условий. Первым из этих условий является наличие остаточного магнитного потока между полюсами. При вращении якоря остаточный магнитный поток индуцирует в якорной обмотке небольшую остаточную ЭДС. Рис. 11.10 Вторым условием является согласное включение обмотки возбуждения. Обмотки возбуждения и якоря должны быть соединены таким образом, чтобы ЭДС якоря создавала ток, усиливающий остаточный магнитный поток. Усиление магнитного потока приведет к увеличению ЭДС. Машина самовозбуждается и начинает устойчиво работать с каким-то током возбуждения I в = const и ЭДС Е = const, зависящими от сопротивления R в в цепи возбуждения. Третьим условием является то, что сопротивление цепи возбуждения при данной частоте вращения должно быть меньше критического. Изобразим на рис. 11.11

характеристику холостого хода генератора E = f (I в) (кривая 1) и вольт - амперную характеристику сопротивления цепи возбуждения U в = R в ·I в, где U в - падение напряжения в цепи возбуждения. Эта характеристика представляет собой прямую линию 2, наклоненную к оси абсцисс под углом γ (tg γ ~ R в).

Ток обмотки возбуждения увеличивает магнитный поток полюсов при согласном включении обмотки возбуждения. ЭДС, индуцированная в якоре, возрастает, что приводит к дальнейшему увеличению тока обмотки возбуждения, магнитного потока и ЭДС. Рост ЭДС от тока возбуждения замедляется при насыщении магнитной цепи машины. Падение напряжения в цепи возбуждения пропорционально росту тока. В точке пересечения характеристики холостого хода машины 1 с прямой 2 процесс самовозбуждения заканчивается. Машина работает в устойчивом режиме. Если увеличим сопротивление цепи обмотки возбуждения, угол наклона прямой 2 к оси тока возрастает. Точка пересечения прямой с характеристикой холостого хода смещается к началу координат. При некотором значении сопротивления цепи возбуждения R кр, когда γ = γ кр, самовозбуждение становится невозможным. При критическом сопротивлении вольт - амперная характеристика цепи возбуждения становится касательной к прямолинейной части характеристики холостого хода, а в якоре появляется небольшая ЭДС.

1.Принцип активной радиолокации.
2.Импульсная РЛС. Принцип работы.
3.Основные временные соотношения работы импульсной РЛС.
4.Виды ориентации РЛС.
5.Формирование развертки на ИКО РЛС.
6.Принцип функционирования индукционного лага.
7.Виды абсолютных лагов. Гидроакустический доплеровский лаг.
8.Регистратор данных рейса. Описание работы.
9.Назначение и принцип работы АИС.
10.Передаваемая и принимаемая информация АИС.
11.Организация радиосвязи в АИС.
12.Состав судовой аппаратуры АИС.
13.Структурная схема судовой АИС.
14.Принцип действия СНС GPS.
15.Сущность дифференциального режима GPS.
16.Источники ошибок в ГНСС.
17.Структурная схема приемника GPS.
18.Понятие об ECDIS.
19.Классификация ЭНК.
20.Назначение и свойства гироскопа.
21.Принцип работы гирокомпаса.
22.Принцип работы магнитного компаса.

Электронные термометры получили широкое распространение в качестве измерителей температуры. Ознакомиться с контактными и бесконтактными цифровыми термометрами можно на сайте http://mera-tek.ru/termometry/termometry-elektronnye . Этими приборами в основном и обеспечивается измерение температуры на технологических установках благодаря высокой точности измерения и большой скорости регистрации.

В электронных потенциометрах, как показывающих, так и регистрирующих, применяются автоматическая стабилизация тока в цепи потенциометра и непрерывная компенсация термопары.

Соединение токопроводящих жил — часть технологического процесса соединения кабеля. Многопроволочные токопроводящие жилы с площадью сечения от 0,35 до 1,5 мм 2 соединяют пайкой после скрутки отдельных проволок (рис. 1). Если восстанавливают изоляционными трубками 3, то перед скруткой проволок их необходимо надеть на жилу и сдвинуть к срезу оболочки 4.

Рис. 1. Соединение жил скруткой: 1 — жила токопроводящая; 2 — изоляция жилы; 3 — трубка изоляционная; 4 — оболочка кабеля; 5 — луженые проволоки; 6 — паяная поверхность

Однопроволочные жилы соединяют внахлест, скрепляя перед пайкой двумя бандажами из двух-трех витков медной луженой проволоки диаметром 0,3 мм (рис. 2). Также можно использовать специальные клеммы wago 222 415 , которые сегодня стали очень популярны за счет простоты использования и надежности эксплуатации.

При монтаже электрических исполнительных механизмов корпус их необходимо заземлять проводом сечением не менее 4 мм 2 через винт заземления. Место присоединения заземляющего проводника тщательно зачищают, а после присоединения наносят на него слой консистентной смазки ЦИАТИМ-201 для предохранения от коррозии. По окончании монтажа с помощью проверяют значение , которое должно быть не менее 20 МОм, и заземляющего устройства, которое не должно превышать 10 Ом.

Рис. 1. Схема электрических соединений блока датчиков однооборотного электрического механизма. А — блок усилителя БУ-2, Б — блок магнитного датчика, В — электрический исполнительный механизм


Монтаж блока датчиков однооборотных электрических исполнительных механизмов производится по схеме электрических соединений, показанной на рис. 1, проводом сечением не менее 0,75 мм 2 . Перед установкой датчика необходимо проверить его работоспособность по схеме, изображенной на рис. 2.

21.03.2019

Типы газоанализаторов

Используя газ в печах, различных устройствах и установках, необходимо контролировать процесс его сжигания, чтобы обеспечить безопасную эксплуатацию и эффективную работу оборудования. При этом качественный и количественный состав газовой среды определяется с помощью приборов, называемых

ОТЧЕТ

по лабораторной работе №1:

Выполнил: студент гр. ЭТ-21-10

Шоглев Р.Г.

Преподаватель:

Пичугин Ю.П.

Чебоксары 2012

Лабораторная работа №1

«Исследование генератора постоянного тока»

Цель работы: исследование генератора постоянного тока с различными видами возбуждения, снятие и изучение различных характеристик, в частности нагрузочная и характеристика холостого хода.

Необходимые исходные сведения

Устройство и принцип действия

На статоре машин постоянного тока (рис. 6) имеются об­мотки возбуждения, расположенные на главных полюсах, а так­же обмотка якоря, расположенная на роторе.

В установившемся режиме полюсная система статора созда­ет неизменное по направлению магнитное поле, которое прони­зывает якорь. При вращении якоря в этом поле в его проводни­ках наводится переменная ЭДС. Специальное устройство - кол­лектор и щетки, которые можно рассматривать как механиче­ский выпрямитель, позволяет получить на выводах обмотки яко­ря практически постоянную во времени ЭДС.

Способы возбуждения генераторов постоянного тока

Генераторы с независимым возбуждением

Если независимая обмотка возбуждения L1G (см. рис.1) по­лучает питание от стороннего источника постоянного тока, воз­буждение называется независимым. Обычно у крупных генера­торов таким источником служит вспомогательный генератор небольшой мощности, называемый возбудителем.

В учебной лаборатории независимая обмотка возбуждения питается от внутренней сети постоянного тока.

Генераторы с параллельным возбуждением

Обмотку возбуждения L1G можно питать от выводов об­мотки якоря самого генератора (см. рис. 2). В этом случае отпа­дает надобность в дополнительном источнике постоянного тока, что является существенным преимуществом генератора с парал­лельным возбуждением. Недостатком параллельного возбужде­ния является значительное уменьшение выходного напряжения при увеличении тока нагрузки генератора.

Генераторы со смешанным возбуждением

Генераторы со смешанным возбуждением снабжаются дву­мя обмотками возбуждения: параллельной L1G и последова­тельной L2G (см. рис.З).

Применение последовательной обмотки, МДС которой про­порциональна току нагрузки, обеспечивает автоматическое уве­личение потока возбуждения с ростом нагрузки и позволяет поддерживать достаточно стабильное напряжение при измене­нии тока нагрузки в широких пределах.

Самовозбуждение генераторов

В генераторах с параллельным, последовательным и сме­шанным возбуждениями источником питания обмоток возбуж­дения является якорь самой машины (см. рис. 2, 3).

Рассмотрим процесс самовозбуждения генератора с парал­лельным возбуждением на холостом ходу. Магнитная система машины, будучи однажды намагниченной, сохраняет неболь­шой поток остаточного магнетизма. При вращении якоря в поле остаточного магнетизма в его обмотке возникает ЭДС Е ост, ко­торая создает в обмотке возбуждения первоначальный ток. Этот ток усиливает магнитное поле машины, вследствие чего напря­жение на зажимах якоря и обмотке возбуждения возрастает, что приводит к увеличению тока возбуждения и т.д. Таким образом, процесс самовозбуждения есть одновременное нарастание на­пряжения на выводах обмотки якоря и тока возбуждения гене­ратора. Пренебрегая сопротивлением якоря, можно считать, что ЭДС в обмотке якоря уравновешивается ЭДС самоиндукции и падением напряжения на активном сопротивлении обмотки воз­буждения:

где e о - мгновенное значение ЭДС в обмотке якоря; i в - мгно­венное значение тока в обмотке возбуждения; R B , L B – активное сопротивление и коэффициент самоиндукции обмотки возбуж­дения.

Падение напряжения на активном сопротивлении обмотки возбуждения и R в = i B R B с ростом тока i в растет линейно и изобра­жается (см. рис. 4) прямой ОА. Зависимость e 0 =f(i в) представля­ет собой характеристику холостого хода генератора.

При значении тока возбуждения, равного i в (рис. 5), произ­водная

Это означает, что ток i в увеличивается во время переходного про­цесса при самовозбуж­дении. В точке А пере­сечения характеристики холостого хода и пря­мой ОА , ток i в в этой точке перестает нарастать (i в =const ) и процесс самовозбужде­ния заканчивается.

Процесс самовоз­буждения ( ) возможен при выполнении следующих ус­ловий:

а) в машине должен быть поток остаточного магнетизма. При отсутствии остаточного магнетизма магнитную систему машины следует намагнитить, пропустив постоянный ток по обмотке возбуждения от постороннего источника;

б) направления потока остаточного магнетизма и потока возбу­ждения должны быть одинаковыми. Если ток в обмотке возбуж­дения создает магнитный поток, направленный встречно оста­точному, то генератор не возбуждается, нужно изменить на­правление тока в обмотке возбуждения, изменив полярность присоединения ее зажимов к обмотке якоря;

в) сопротивление в цепи возбуждения должно быть меньше критического. Крити­ческому сопротивления цепи обмотки возбуждения соответст­вует зависимость и R в = i B R B .КР представляющая собой касатель­ную О В к характеристике холостого хода.

Реакция якоря

Магнитное поле в машине постоянного тока создается при холостом ходе только обмоткой возбуждения (рис. 6, а). При вращении ротора по направлению стрелки в проводниках об­мотки якоря наводится ЭДС (на рис. 6, а направления ЭДС по­казаны знаками «+» и « ».

При нагрузке по обмотке якоря протекает ток. В проводни­ках обмотки якоря генератора направление тока совпадает с на­правлением ЭДС. Такое распределение тока в проводниках об­мотки якоря имеет место, когда щетки располагаются на гео­метрической нейтрали (их расположение совпадает с попереч­ной осью q). В результате возникает поле якоря. Воздействие МДС обмотки якоря на поле машины, созданное обмоткой воз­буждения, называется реакцией якоря. Пояснить, как изменяется поле машины в результате этого воздействия, мы можем с по­мощью рис.6. Поле машины при ее холостом ходе (рис, 6, а) соз­дается только МДС обмотки возбуждения. Поле якоря (рис. 6, 6) получается в машине при наличии тока только в обмотке якоря. Его поле имеет ось, совпадающую с линией расположения ще­ток. Из сопоставления рис 6,а и 6,б видно, что МДС обмотки возбуждения и обмотки якоря складываются в пределах одной половины полюса и вычитаются в пределах другой половины полюса. Из-за насыщения ферромагнитных участков, располо­женных близко к воздушному зазору (это в основном зубцы ро­тора), увеличение МДС на половине полюса не приводит к про­порциональному увеличению индукции в воздушном зазоре. В то же время на другой половине полюса, где МДС меньше, на­сыщение отсутствует. Магнитная индукция здесь уменьшается практически пропорционально уменьшению МДС. В результате при нагрузке магнитный поток Ф уменьшается. Таким образом, поперечная реакция якоря является размагничивающей.



Просмотров