Трехфазный генератор принцип работы. Как устроен и работает генератор автомобиля

Генератор тока преобразует механическую (кинетическую) энергию в электроэнергию. В энергетике пользуются только вращающимися электромашинными генераторами, основанными на возникновении электродвижущей силы (ЭДС) в проводнике, на который каким-либо образом действует изменяющееся магнитное поле. Ту часть генератора, которая предназначена для создания магнитного поля, называют индуктором, а часть, в которой индуцируется ЭДС – якорем.

Вращающуюся часть машины называют ротором , а неподвижную часть – статором . В синхронных машинах переменного тока индуктором обычно является ротор, а в машинах постоянного тока – статор. В обоих случаях индуктор представляет собой обычно двух- или многополюсную электромагнитную систему, снабженную обмоткой возбуждения, питаемой постоянным током (током возбуждения), но встречаются и индукторы, состоящие из системы постоянных магнитов. В индукционных (асинхронных) генераторах переменного тока индуктор и якорь не могут четко (конструктивно) различаться друг от друга (можно сказать, что статор и ротор одновременно являются и индуктором и якорем).

Более 95 % электроэнергии на электростанциях мира производится при помощи синхронных генераторов переменного тока . При помощи вращающегося индуктора в этих генераторах создается вращающееся магнитное поле, наводящее в статорной (обычно трехфазной) обмотке переменную ЭДС, частота которой точно соответствует частоте вращения ротора (находится в синхронизме с частотой вращения индуктора). Если индуктор, например, имеет два полюса и вращается с частотой 3000 r/min (50 r/s), то в каждой фазе статорной обмотки индуцируется переменная ЭДС частотой 50 Hz. Конструктивное исполнение такого генератора упрощенно изображено на рис. 1.

Рис. 1. Принцип устройства двухполюсного синхронного генератора. 1 статор (якорь), 2 ротор (индуктор), 3 вал, 4 корпус. U-X, V-Y, W-Z – размещенные в пазах статора части обмоток трех фаз

Магнитная система статора представляет собой спрессованный пакет тонких стальных листов, в пазах которого располагается статорная обмотка. Обмотка состоит из трех фаз, сдвинутых в случае двухполюсной машины друг относительно друга на 1/3 периметра статора; в фазных обмотках индуцируются, следовательно, ЭДС, сдвинутые друг относительно друга на 120o. Обмотка каждой фазы, в свою очередь, состоит из многовитковых катушек, соединенных между собой последовательно или параллельно. Один из наиболее простых вариантов конструктивного исполнения такой трехфазной обмотки двухполюсного генератора упрощенно представлен на рис. 2 (обычно число катушек в каждой фазе больше, чем показано на этом рисунке). Те части катушек, которые находятся вне пазов, на лобовой поверхности статора, называются лобовыми соединениями.

Рис. 2. Простейший принцип устройства статорной обмотки трехфазного двухполюсного синхронного генератора в случае двух катушек в каждой фазе. 1 развертка поверхности магнитной системы статора, 2 катушки обмотки, U, V, W начала фазных обмоток, X, Y, Z концы фазных обмоток

Полюсов индуктора и, в соответствии с этим, полюсных делений статора, может быть и больше двух. Чем медленнее вращается ротор, тем больше должно быть при заданной частоте тока число полюсов. Если, например, ротор вращается с частотой 300 r/min, то число полюсов генератора, для получения частоты переменного тока 50 Hz, должно быть 20. Например, на одной из крупнейших гидроэлектростанций мира, ГЭС Итайпу (Itaipu, см. рис. 4) генераторы, работающие на частоте 50 Hz, исполнены 66-полюсными, а генераторы, работающие на частоте 60 Hz – 78-полюсными.

Обмотка возбуждения двух- или четырехполюсного генератора размещается, как показано на рис. 1, в пазах массивного стального сердечника ротора. Такая конструкция ротора необходима в случае быстроходных генераторов, работающих при частоте вращения в 3000 или 1500 r/min (особенно для турбогенераторов, предназначенных для соединения с паровыми турбинами), так как при такой скорости на обмотку ротора действуют большие центробежные силы. При большем числе полюсов каждый полюс имеет отдельную обмотку возбуждения (рис. 3.12.3). Такой явнополюсный принцип устройства применяется, в частности, в случае тихоходных генераторов, предназначенных для соединения с гидротурбинами (гидрогенераторов), работающих обычно при частоте вращения от 60 r/min до 600 r/min.

Очень часто такие генераторы, в соответствии с конструктивным исполнением мощных гидротурбин, выполняются с вертикальным валом.

Рис. 3. Принцип устройства ротора тихоходного синхронного генератора. 1 полюс, 2 обмотка возбуждения, 3 колесо крепления, 4 вал

Обмотку возбуждения синхронного генератора обычно питают постоянным током от внешнего источника через контактные кольца на валу ротора. Раньше для этого предусматривался специальный генератор постоянного тока (возбудитель), жестко связанный с валом генератора, а в настоящее время используются более простые и дешевые полупроводниковые выпрямители. Встречаются и системы возбуждения, встроенные в ротор, в которых ЭДС индуцируется статорной обмоткой. Если для создания магнитного поля вместо электромагнитной системы использовать постоянные магниты, то источник тока возбуждения отпадает и генератор становится значительно проще и надежнее, но в то же время и дороже. Поэтому постоянные магниты применяются обычно в относительно маломощных генераторах (мощностью до нескольких сотен киловатт).

Конструкция турбогенераторов, благодаря цилиндрическому ротору относительно малого диаметра, очень компактна. Их удельная масса составляет обычно 0,5…1 kg/kW, и их номинальная мощность можеь достигать 1600 MW. Устройство гидрогенераторов несколько сложнее, диаметр ротора велик и удельная масса их поэтому обычно 3,5…6 kg/kW. До настоящего времени они изготовлялись номинальной мощностью до 800 MW.

При работе генератора в нем возникают потери энергии, вызванные активным сопротивлением обмоток (потери в меди), вихревыми токами и гистерезисом в активных частях магнитной системы (потери в стали) и трением в подшипниках вращающихся частей (потери на трение). Несмотря на то, что суммарные потери обычно не превышают 1…2 % мощности генератора, отвод тепла, освобождающегося в результате потерь, может оказаться затруднительным. Если упрощенно считать, что масса генератора пропорциональна его мощности, то его линейные размеры пропорциональны кубическому корню мощности, а поверхностные размеры – мощности в степени 2/3. С увеличением мощности, следовательно, поверхность теплоотвода растет медленнее, чем номинальная мощность генератора. Если при мощностях порядка нескольких сотен киловатт достаточно применять естественное охлаждение, то при бoльших мощностях необходимо перейти на принудительную вентиляцию и, начиная приблизительно со 100 MW, использовать вместо воздуха водород. При еще больших мощностях (например, более 500 MW) необходимо дополнить водородное охлаждение водным. У крупных генераторах надо специально охлаждать и подшипники, обычно используя для этого циркуляцию масла.

Тепловыделение генератора можно значительно уменьшить путем применения сверхпроводящих обмоток возбуждения. Первый такой генератор (мощностью 4 MVA), предназначенный для применения на судах, изготовила в 2005 году немецкая электротехническая фирма Сименс (Siemens AG) . Номинальное напряжение синхронных генераторов, в зависимости от мощности, находится обычно в пределах от 400 V до 24 kV. Использовались и более высокие номинальные напряжения (до 150 kV), но чрезвычайно редко. Кроме синхронных генераторов сетевой частоты (50 Hz или 60 Hz) выпускаются и высокочастотные генераторы (до 30 kHz) и генераторы пониженной частоты (16,67 Hz или 25 Hz), используемые на электрифицированных железных дорогах некоторых европейских стран. К синхронным генераторам относится, в принципе, и синхронный компенсатор, представляющий собой синхронный двигатель, работающий на холостом ходу и отдающий в высоковольтную распределительную сеть реактивную мощность. При помощи такой машины можно покрыть потребление реактивной мощности местных промышленных электропотребителей и освободить основную сеть энергосистемы от передачи реактивной мощности.

Кроме синхронных генераторов относительно редко и при относительно малых мощностях (до нескольких мегаватт) могут использоваться и асинхронные генераторы . В обмотке ротора такого генератора ток индуцируется магнитным полем статора, если ротор вращается быстрее, чем статорное вращающееся магнитное поле сетевой частоты. Необходимость в таких генераторах возникает обычно тогда, когда невозможно обеспечить неизменную скорость вращения первичного двигателя (например, ветряной турбины, некоторых малых гидротурбин и т. п.).

У генератора постоянного тока магнитные полюсы вместе с обмоткой возбуждения располагаются обычно в статоре, а обмотка якоря – в роторе. Так как в обмотке ротора при его вращении индуцируется переменная ЭДС, то якорь необходимо снабжать коллектором (коммутатором), при помощи которого на выходе генератора (на щетках коллектора) получают постоянную ЭДС. В настоящее время генераторы постоянного тока применяются редко, так как постоянный ток проще получать при помощи полупроводниковых выпрямителей.

К электромашинным генераторам относятся и электростатические генераторы , на вращающейся части которых путем трения (трибоэлектрически) создается электрический заряд высокого напряжения. Первый такой генератор (вращаемый вручную серный шар, который электризовался при трении об руку человека) изготовил в 1663 году мэр города Магдебурга (Magdeburg, Германия) Отто фон Гюрике (Otto von Guericke, 1602–1686). В ходе своего развития такие генераторы позволяли открывать многие электрические явления и закономерности. Они и сейчас не потеряли своего значения как средств проведения экспериментальных исследований по физике.

Первый изготовил 4 ноября 1831 года профессор Лондонского Королевского института (Royal Institution) Майкл Фарадей (Michael Faraday, 1791–1867). Генератор состоял из подковообразного постоянного магнита и медного диска, вращающегося между магнитными полюсами (рис. 3.12.4). При вращении диска между его осью и краем индуцировалась постоянная ЭДС. По такому же принципу устроены более совершенные униполярные генераторы, находящие применение (хотя относительно редко) и в настоящее время.

Рис. 4. Принцип устройства униполярного генератора Майкла Фарадея. 1 магнит, 2 вращающийся медный диск, 3 щетки. Рукоятка диска не показана

Майкл Фарадей родился в бедной семье и после начальной школы, в возрасте 13 лет, поступил учеником переплетчика книг. По книгам он самостоятельно продолжал свое образование, а по Британской энциклопедии ознакомился с электричеством, изготовил электростатический генератор и лейденскую банку. Для расширения своих знаний он начал посещать публичные лекции по химии директора Королевского института Гемфри Дэви (Humphrey Davy, 1778–1829), а в 1813 году получил должность его ассистента. В 1821 году он стал главным инспектором этого института, в 1824 году – членом Королевского общества (Royal Society) и в 1827 году – профессором химии Королевского института. В 1821 году он начал свои знаменитые опыты по электричеству, в ходе которых предложил принцип действия электродвигателя, открыл явление электромагнитной индукции, принцип устройства магнитоэлектрического генератора, закономерности электролиза и много других основополагающих физических явлений. Спустя год после вышеописанного опыта Фарадея, 3 сентября 1832 года, парижский механик Ипполит Пикси (Hippolyte Pixii, 1808–1835) изготовил по заказу и под руководством основоположника электродинамики Андре Мари Ампера (Andre Marie Ampere, 1775–1836) генератор с вращаемым вручную, как у Фарадея, магнитом (рис. 5). В якорной обмотке генератора Пикси индуцируется переменная ЭДС. Для выпрямления получаемого тока к генератору вначале пристроили открытый ртутный коммутатор, переключающий полярность ЭДС при каждом полуобороте ротора, но вскоре он был заменен более простым и безопасным цилиндрическим щеточным коллектором, изображенным на рис. 5.

Рис. 5. Принцип устройства магнитоэлектрического генератора Ипполита Пикси (a), график индуцируемой ЭДС (b) и график получаемой при помощи коллектора пульсирующей постоянной ЭДС (c). Рукоятка и конусная зубчатая передача не показаны

Генератор, построенный по принципу Пикси, впервые применил в 1842 году на своем заводе в Бирмингеме (Birmingham) для электропитания гальванических ванн английский промышленник Джон Стивен Вульрич (John Stephen Woolrich, 1790–1843), использовав в качестве приводного двигателя паровую машину мощностью 1 л. с. Напряжение его генератора составляло 3 V, номинальный ток – 25 A и кпд – около 10 %. Такие же, но более мощные генераторы быстро начали внедряться и на других гальванических предприятиях Европы. В 1851 году немецкий военный врач Вильгельм Йозеф Зинштеден (Wilhelm Josef Sinsteden, 1803–1891) предложил использовать в индукторе вместо постоянных магнитов электромагниты и питать их током от меньшего вспомогательного генератора; он же обнаружил, что кпд генератора увеличится, если стальной сердечник электромагнита изготовить не массивным, а из параллельных проволок. Однако идеи Зинштедена стал реально использовать только в 1863 году английский электротехник-самоучка Генри Уайльд (Henry Wilde, 1833–1919), который предложил, среди прочих нововведении, насадить машину-возбудитель (англ. exitatrice) на вал генератора. В 1865 году он изготовил генератор невиданной доселе мощности в 1 kW, при помощи которого он мог демонстрировать даже плавку и сварку металлов.

Важнейшим усовершенствованием генераторов постоянного тока стало их самовозбуждение , принцип которого запатентовал в 1854 году главный инженер государственных железных дорог Дании Сёрен Хьёрт (Soren Hjorth, 1801–1870), но не нашедшее в то время практического применения. В 1866 году этот принцип снова открыли независимо друг от друга несколько электротехников, в том числе уже упомянутый Г. Уайльд, но широко известным он стал в декабре 1866 года, когда немецкий промышленник Эрнст Вернер фон Сименс (Ernst Werner von Siemens, 1816–1892) применил его в своем компактном и высокоэффективном генераторе. 17 января 1867 года в Берлинской академии наук был прочитан его знаменитый доклад о динамоэлектрическом принципе (о самовозбуждении). Самовозбуждение позволило отказатьса от вспомогательных генераторов возбуждения (от возбудителей), что обусловило возможность выработки намного более дешевой электроэнергии в больших количествах. По этой причине год 1866 часто считают годом зарождения электротехники сильного тока. В первых самовозбуждающихся генераторах обмотку возбуждения включали, как у Сименса, последовательно (сериесно) с якорной обмоткой, но в феврале 1867 года английский электротехник Чарлз Уитстон (Charles Wheatstone, 1802–1875) предложил параллельное возбуждение, позволяющее лучше регулировать ЭДС генератора, к которому он пришел еще до сообщений о последовательном возбуждении, открытом Сименсом (рис. 6).

Рис. 6. Развитие систем возбуждения генераторов постоянного тока. a возбуждение при помощи постоянных магнитов (1831), b внешнее возбуждение (1851), c последовательное самовозбуждение (1866), d параллельное самовозбуждение (1867). 1 якорь, 2 обмотка возбуждения. Регулировочные реостаты тока возбуждения не показаны

Необходимость в генераторах переменного тока возникла в 1876 году, когда работающий в Париже русский электротехник Павел Яблочков (1847–1894) стал освещать городские улицы при помощи изготовляемых им дуговых ламп переменного тока (свечей Яблочкова). Первые необходимые для этого генераторы создал парижский изобретатель и промышленник Зеноб Теофиль Грамм (Zenobe Theophile Gramme, 1826–1901). С началом массового производства ламп накаливания в 1879 году переменный ток на некоторое время потерял свое значение, но снова обрел актуальность в связи с ростом дальности передачи электроэнергии в середине 1880-х годов. В 1888–1890 годах владелец собственной научно-исследовательской лаборатории Тесла-Электрик (Tesla-Electric Co., Нью-Йорк, США) эмигрировавший в США сербский электротехник Никола Тесла (Nikola Tesla, 1856–1943) и главный инженер фирмы АЭГ (AEG, Allgemeine Elektricitats-Gesellschaft) эмигрировавший в Германию русский электротехник Михаил Доливо-Добровольский (1862–1919) разработали трехфазную систему переменного тока. В результате началось производство все более мощных синхронных генераторов для сооружаемых тепло- и гидроэлектростанций.

Важным этапом в развитии турбогенераторов может считаться разработка в 1898 году цилиндрического ротора совладельцем швейцарского электротехнического завода Браун, Бовери и компания (Brown, Boveri & Cie., BBC) Чарлзом Эженом Ланселотом Брауном (Charles Eugen Lancelot Brown, 1863–1924). Первый генератор с водородным охлаждением (мощностью 25 MW) выпустила в 1937 году американская фирма Дженерал Электрик (General Electric), а с внутрипроводным водяным охлаждением – в 1956 году английская фирма Метрополитен Виккерс (Metropolitan Vickers).

Генератор - это устройство, которое производит продукт, вырабатывает электроэнергию либо создает электромагнитные, электрические, звуковые, световые колебания и импульсы. В зависимости от функций их можно разделить на виды, которые мы рассмотрим далее.

Генератор постоянного тока

Для того чтобы понять принцип работы генератора постоянного тока, нужно выяснить его основные характеристики, а именно зависимости главных величин, которые и определяют работу устройства в применяемой схеме возбуждения.

Основной величиной является напряжение, на которое влияет скорость вращения генератора, токовозбуждения и нагрузки.

Основной принцип работы генератора постоянного тока зависит от воздействия раздела энергии на магнитный поток основного полюса и, соответственно, от получаемого с коллектора напряжения при неизменном положении щеток на нем. У аппаратов, которые оснащены добавочными полюсами, элементы располагаются таким образом, чтобы токораздел полностью совпадал с геометрической нейтральностью. Благодаря этому, он будет смещаться по линии вращения якоря в положение оптимальной коммутации с последующим закреплением щеткодержателей в таком положении.

Генератор переменного тока

Принцип работы генератора переменного тока основан на превращении механической в электроэнергию благодаря вращению проволочной катушки в созданном магнитном поле. Это приспособление состоит из неподвижного магнита и проволочной рамки. Каждый из ее концов соединяется между собой при помощи контактного кольца, которое скользит по электропроводной угольной щетке. За счет такой схемы электрический индуцированный ток начинает переходить к внутреннему контактному кольцу в тот момент, когда половина рамки, соединяющаяся с ним, проходит мимо северного полюса магнита и, наоборот, к внешнему кольцу в тот момент, когда другая часть проходит мимо северного полюса.

Самый экономичный способ, на котором основывается принцип работы генератора переменного тока, является сильная выработка. Это явление получается за счет использования одного магнита, который вращается относительно нескольких обмоток. Если его вставить в проволочную катушку, он начнет индуцировать электрический ток, таким образом будет заставлять стрелку гальванометра отклонятся в сторону от положения «0». После того как магнит будет вынут из кольца, ток поменяет свое направление, а стрелка прибора начнет отклоняться в другую сторону.

Автомобильный генератор

Чаще всего его можно отыскать на передней части двигателя, основная часть работы заключается во вращении коленчатого вала. Новые машины могут похвастаться гибридным типом, который также выполняет и роль стартера.

Принцип работы автомобильного генератора заключается во включении зажигания, при котором ток движется по контактным кольцам и направляется к щелочному узлу, а после переходит на перемотку возбуждения. В результате такого действия будет образовано магнитное поле.

Совместно с коленчатым валом начинает свою работу ротор, который и создает волны, пронизывающие обмотку статора. Переменный ток начинает появляться на выходе перемотки. При работе генератора в режиме самовозбуждения частота вращения увеличивается до определенного значения, затем в выпрямительном блоке начинает меняться переменное напряжение на постоянное. В конечном итоге устройство будет обеспечивать потребителей необходимым электричеством, а аккумулятор - током.

Принцип работы автомобильного генератора состоит в изменении скорости коленчатого вала либо смены нагрузки, при которой включается регулятор напряжения, он управляет временем при включении перемотки возбуждения. В момент уменьшения внешних нагрузок либо увеличения вращения ротора период включения обмотки возбуждения значительно сокращается. В тот момент, когда ток увеличивается настолько, что генератор прекращает справляться, приступает к работе АКБ.

У современных автомобилей на панели приборов находится контрольная лампочка, которая и оповещает водителя про возможные отклонения в генераторе.

Электрический генератор

Принцип работы электрического генератора заключается в переработке энергии механической на электрическое поле. Основными источниками такой силы могут быть вода, пар, ветер, двигатель внутреннего сгорания. Принцип работы генератора основывается на совместном взаимодействии магнитного поля и проводника, а именно в момент вращения рамки ее начинают пересекать линии магнитной индукции, и в это время появляется электродвижущая сила. Она заставляет ток протекать по рамке при помощи контактных колец и вливаться во внешнюю цепь.

Инвентарные генераторы

На сегодняшний день становится очень популярным инверторный генератор, принцип работы которого заключается в создании автономного источника питания, производящего высококачественную электроэнергию. Такие приборы применяют как временные, а также постоянные источники питания. Чаще всего они используются в больницах, школах и иных учреждениях, где не должны присутствовать даже малейшие скачки напряжения. Всего этого можно добиться, используя инверторный генератор, принцип работы которого основан на постоянстве и проходит по такой схеме:

  1. Выработка высокочастотного переменного тока.
  2. Благодаря выпрямителю преобразуется полученный ток в постоянный.
  3. Затем образуется накопление тока в аккумуляторах и стабилизируется колебания электроволн.
  4. При помощи инвертора постоянная энергия меняется на переменный ток нужного напряжения и частоты, а затем поступает к пользователю.

Дизельный генератор

Принцип работы дизель-генератора заключается в преобразовании энергии топлива в электроэнергию, основные действия которого заключаются в следующем:

  • при попадании в дизель топлива оно начинает сгорать, после чего трансформируется из химической в тепловую энергию;
  • благодаря наличию кривошипно-шатунного механизма тепловая сила преобразуется в механическую, это все происходит в коленчатом вале;
  • полученная энергия при помощи ротора превращается в электрическую, которая и необходима на выходе.

Синхронный генератор

Принцип работы синхронного генератора основан на одинаковой чистоте вращения магнитного поля статора и ротора, который и создает вместе с полюсами магнитное поле, и оно пересекает обмотку статора. В этом агрегате ротор - постоянный электромагнит, число полюсов которого может начинаться от 2-х и выше, но кратным они должны быть 2-м.

При запуске генератора ротор создает слабое поле, но после увеличения оборотов начинает появляться большая сила в обмотке возбуждения. Получаемое напряжение через автоматический блок регулировки поступает на устройство и контролирует выходное напряжение за счет изменений в магнитном поле. Основной принцип работы генератора заключается в высокой стабильности исходящего напряжения, а недостатком является существенная возможность перегрузок по току. Еще к негативным качествам можно добавить присутствие щеточного узла, который все равно в определенное время придется обслуживать, а это само собой влечет дополнительные финансовые затраты.

Асинхронный генератор

Принцип работы генератора заключается в постоянном нахождении в режиме торможения с ротором, который вращается с опережением, но все-таки в той же ориентации, что и магнитное поле у статора.

В зависимости от используемого типа обмотки ротор может быть фазным или короткозамкнутым. Созданное при помощи вспомогательной обмотки вращающееся магнитное поле начинает индуцировать его на роторе, которое и вращается вместе с ним. Частота и напряжение на выходе напрямую зависит от количества оборотов, так как магнитное поле не регулируется и остается неизменным.

Электрохимический генератор

Также существует электрохимический генератор, устройство и принцип работы которого заключаются в выработке из водорода электрической энергии в автомобиле для его движения и питания всех электроприборов. Этот аппарат является химическим так как он производит энергию за счет прохождения реакции кислорода и водорода, который для выработки топлива используется в газообразном состоянии.

Генератор акустических помех

Принцип работы генератора акустических помех заключается в защите организаций и физических лиц от прослушивания переговоров и различного рода мероприятий. За ними можно проследить через оконные стекла, стены, системы вентиляции, отопительные трубы, радиомикрофоны, проводные микрофоны и устройства лазерного съема полученной акустической информации с окон.

Поэтому фирмы очень часто для защиты своей конфиденциальной информации используют генератор, устройство и принцип работы которого заключается в настройке аппарата на заданную частоту, если она известна, либо на определенный диапазон. Затем создается универсальная помеха в виде шумового сигнала. Для этого в самом аппарате находится генератор шума нужной мощности.

Также существуют и генераторы, которые находятся в шумовом диапазоне, благодаря которым можно замаскировать полезный звуковой сигнал. В этот комплект входит блок, который и формирует шум, а также его усиления и акустические излучатели. Основным недостатком использования таких устройств являются помехи, которые появляются при проведении переговоров. Для того чтобы аппарат справлялся полностью со своей работой, переговоры стоит проводить всего лишь в течение 15 минут.

Регулятор напряжения

Основной принцип работы регулятора напряжения основывается на поддерживании энергии бортовой сети во всех режимах работы при разнообразном изменении частоты поворотов ротора генератора, температуры внешней среды и электрической нагрузки. Этот прибор также может выполнять и второстепенные функции, а именно защищать части генераторной установки от возможного аварийного режима установки и перегрузки, автоматически подключать в бортовую систему цепь обмотки возбуждения либо сигнализацию аварийной работы устройства.

Все такие приборы работают по одному принципу. Напряжение в генераторе определяется несколькими факторами - силой тока, частотой вращения ротора и величиной магнитного потока. Чем меньше нагрузка на генератор и выше частота вращения, тем будет больше напряжение устройства. Благодаря большему току в обмотке возбуждения начинает увеличиваться магнитный поток, а с ним и напряжение в генераторе, а после того, как уменьшается ток, становится меньшим и напряжение.

Независимо от производителя таких генераторов, все они нормализуют напряжение изменением тока возбуждения одинаково. При возрастании либо уменьшении напряжения начинает увеличиваться либо уменьшаться ток возбуждения и проводить напряжение в необходимые пределы.

В повседневной жизни использование генераторов очень помогает человеку в решении множества возникающих вопросов.

В 1832-м году неизвестным изобретателем был создан первый однофазный синхронный многополюсный генератор переменного тока. Но в самых первых электронных устройствах применялся только постоянный ток, в то время как переменный ток долгое время не мог найти своего практического применения. Тем не менее, вскоре выяснили, что намного практичнее использовать не постоянный, а переменный ток, то есть тот ток, который периодически меняет свое значение и направление. Преимущества переменного тока, состоят в том, что его удобнее вырабатывать при помощи электростанций, генераторы переменного тока экономичнее и проще в обслуживании, чем аналоги, работающие на постоянном токе. Поэтому были собраны надежные электрические двигатели переменного тока, которые сразу нашли свое широкое применение в промышленных и бытовых сферах. Надо отметить, что благодаря существованию переменного тока, его особенным физическим явлениям, смогли появиться такие изобретения, как радио, магнитофон и прочая автоматика и электротехника, без которой сложно представить современную жизнь.

Устройство генератора переменного тока

Генератор переменного тока – это устройство, которые преобразует механическую энергию, в электрическую.

Состоит он из неподвижной части, которая называется статор или якорь (см. рисунок) и вращающейся части - ротор или индуктор. В генераторе переменного тока ротор - это электромагнит, который обеспечивает магнитное поле, которое передается на статор. На внутренней поверхности статора есть осевые впадины, так называемые пазы, в которых расположена обмотка переменного тока (проводник). Статор генератора изготавливается из 0.35 мм спрессованных стальных листов, которые изолированы покрытой лаком пленкой. Эти листы устанавливаются в станине устройства. Ротор крепится внутри статора и вращается посредством двигателя. Вал – одна из деталей, для передачи крутящего момента под действием расположенных на нём опор. На общем валу с генератором, располагается так называемый возбудитель постоянного тока, который питает постоянным током обмотки ротора. Аккумулятор в генераторе переменного тока выполняет функции стартерной батареи, которая имеет свойство накапливать и хранить электроэнергию при нехватке в отсутствии работы двигателя и при нехватке мощности, которую развивает генератор.

Применение генераторов переменного тока в жизни

В течении последних лет, популярность использования электростанций и генераторов переменного тока значительно возросла. Используются они как в промышленных, так и в бытовых сферах. являются наилучшим вариантом для использования на производстве, в больницах, школах, магазинах, офисах, бизнес центрах, а так же на строительных площадках, значительно упрощая строительство в тех зонах, где электрификация полностью отсутствует. Бытовые генераторы, более практичные, компактные и идеально подходят для использования в коттедже и загородном доме. Генераторы переменного тока широко применяются в различных областях и сферах благодаря тому, что могут решить множество важных проблем, которые связаны с нестабильной работой электричества или полным его отсутствием.

Обслуживание

Практически любая дизельная электростанция в независимости от ее мощности и производителя имеет 2 главные составляющие. Это генератор переменного тока и двигатель внутреннего сгорания. Так как поддерживать данные узлы необходимо в рабочем исправном состоянии, в ходе их эксплуатации нужен определенный перечень обязательных работ по их техническому обслуживанию. К сожалению, подавляющее большинство владельцев считает, что можно ограничиться лишь своевременной заменой масла и фильтра, при этом «техническое обслуживание» можно провести и самостоятельно. Но результатом этого зачастую становится полный отказ работы устройства. В результате чего, не сложно сделать вывод, что проще и дешевле, доверить оборудование профессионалам, которые благодаря знаниям и огромному опыту, смогут увеличить срок службы ДГУ и сократить расходы при аварийных ситуациях.

Переменный ток промышленной частоты вырабатывается на электростанциях специально предназначенными для этих целей электромашинными синхронными генераторами. Принцип действия этих агрегатов основан на явлении электромагнитной индукции. Производимая паровой или гидравлической турбиной механическая энергия преобразовывается в электроэнергию переменного тока.

Вращающейся частью привода или ротором является электрический магнит, который и передает вырабатываемое магнитное поле на статор. Это – внешняя часть устройства, состоящая из трех катушек с проводами.

Передача напряжения осуществляется через коллекторные щетки и кольца. Медные роторные кольца вращаются одновременно с коленвалом и ротором, в результате чего к ним прижимаются щетки. Те, в свою очередь, остаются на месте, позволяя электротоку передаваться от неподвижных элементов генератора его вращающейся части.

Произведенное таким образом магнитное поле, вращаясь поперек статора, производит электропотоки, которые и осуществляют зарядку аккумулятора.

Популярные модели сварочных генераторов переменного тока :

Генератор переменного тока

В настоящее время имеется много различных типов индукционных генераторов . Но все они состоят из одних и тех нее основных частей. Это, во-первых, электромагнит или постоянный магнит, создающий магнитное поле, и, во-вторых, обмотка, в которой индуцируется переменная ЭДС - электро движущая сила (в рассмотренной модели генератора это вращающаяся рамка). Так как ЭДС, наводимые в последовательно соединенных витках, складываются, то амплитуда ЭДС индукции в рамке пропорциональна числу витков в ней. Она пропорциональна также амплитуде переменного магнитного потока (Фm = BS) через каждый виток.

Принцип действия генератора переменного тока следующая. Для получения большого магнитного потока в генераторах применяют специальную магнитную систему, состоящую из двух сердечников, сделанных из электротехнической стали. Обмотки, создающие магнитное поле, размещены в пазах одного из сердечников, а обмотки, в которых индуцируется ЭДС, - в пазах другого. Один из сердечников (обычно внутренний) вместе со своей обмоткой вращается вокруг горизонтальной или вертикальной оси. Поэтому он называется ротором. Неподвижный сердечник с его обмоткой называют статором. Зазор между сердечниками статора и ротора делают как можно меньшим для увеличения потока магнитной индукции.

В изображенной на рисунке модели генератора вращается проволочная рамка, которая является ротором (правда, без железного сердечника). Магнитное поле создает неподвижный постоянный магнит. Разумеется, можно было бы поступить и наоборот: вращать магнит, а рамку оставить неподвижной.

В больших промышленных генераторах вращается именно электромагнит, который является ротором, в то время как обмотки, в которых наводится ЭДС, уложены в пазах статора и остаются неподвижными. Дело в том, что подводить ток к ротору или отводить его из обмотки ротора во внешнюю цепь приходится при помощи скользящих контактов. Для этого ротор снабжается контактными кольцами, присоединенными к концам его обмотки.

Рис.1. Структурная схема генератора переменного тока.

Неподвижные пластины - щетки - прижаты к кольцам и осуществляют связь обмотки ротора с внешней цепью. Сила тока в обмотках электромагнита, создающего магнитное поле, значительно меньше силы тока, отдаваемого генератором во внешнюю цепь. Поэтому генерируемый ток удобнее снимать с неподвижных обмоток, а через скользящие контакты подводить сравнительно слабый ток к вращающемуся электромагниту. Этот ток вырабатывается отдельным генератором постоянного тока (возбудителем), расположенным на том левее валу (В настоящее время постоянный ток в обмотку ротора чаще всего подают из статорной обмотки этого же генератора через выпрямитель).

В маломощных генераторах магнитное поле создается вращающимся постоянным магнитом. В таком случае кольца и щетки вообще не нужны.

Появление ЭДС в неподвижных обмотках статора объясняется возникновением в них вихревого электрического поля, порожденного изменением магнитного потока при вращении ротора.

Современный генератор электрического тока — это внушительное сооружение из медных проводов, изоляционных материалов и стальных конструкций. При размерах в несколько метров важнейшие детали генераторов изготовляются с точностью до миллиметра. Нигде в природе нет такого сочетания движущихся частей, которые могли бы порождать электрическую энергию столь же непрерывно и экономично.

ПЕРЕМЕННОГО ТОКА

Вал генера­тора приводится во вращение от шкива, установ­ленного на коленчатом валу двигателя, клиновид­ным ремнем. Передаточное число клиноременной передачи 1,7-2,0. При движении автомобиля час­тота вращения коленчатого вала при холостом ходе у современных двигателей составляет 500-600 об/мин, максимальная частота 4000-5000 об/мин. Таким образом, кратность изменения частоты вра­щения двигателя, а, следовательно, и вала генера­тора может достигать 8 - 10. Напряжение генера­тора зависит от частоты вращения его вала. Чем выше частота, тем больше напряжение генератора. Однако все приборы электрооборудования автомо­биля, особенно лампы и контрольно-измерительные

приборы, рассчитаны на питание от постоянного напряжения 12 или 24 В. Поддержание постоянства напряжения генератора независимо от изменения частоты вращения и нагрузки генератора (включе­ния потребителей) выполняет специальный прибор, называемый регулятором напряжения.

При снижении частоты вращения коленчатого вала двигателя ниже 500-700 -об /мин напряжение генератора становится меньше напряжения акку­муляторной батареи. Если батарею не отключить от генератора, она начнет разряжаться на генера­тор, что может привести к перегреву изоляции обмоток генератора и разряду аккумуляторной ба­тареи. При увеличении частоты вращения коленча­того вала двигателя необходимо вновь включить ге­нератор в систему электрооборудования. Включе­ние генератора в систему электрооборудования, когда его напряжение выше напряжения аккумуля­торной батареи, и отключение генератора от сети, когда его напряжение ниже напряжения аккумуля­торной батареи, выполняет специальный прибор, на­зываемый реле обратного тока.

Генератор рассчитан на отдачу определенной максимальной для данного генератора величины тока, однако при неисправности в системе электро­оборудования (разряженная аккумуляторная бата­рея, короткое замыкание и т. д.) генератор может отдавать ток больший, чем тот, на который он рас­считан. Длительная работа генератора в таком ре­жиме приведет к его перегреву и сгоранию изоля­ции обмоток. Для защиты генератора от перегрузки служит специальный прибор, называемый огра­ничителем тока.

Все три прибора - регулятор напряжения, реле обратного тока и ограничитель тока-объединены в одном устройстве, называемом реле-регуля­тором.

В некоторых генераторах, например Г-250, пере­менного тока реле обратного тока и ограничитель тока могут отсутствовать, но в конструкции генератора имеются устройства, выполняющие функ­ции этих приборов.

На рис. 1 показано устройство генератора пе­ременного тока Г-250. Генератор имеет статор 6 с трехфазной обмоткой, выполненной в виде отдельных катушек, насаженных, на зубцы статора. В каждой фазе имеется по шесть катушек, соеди­ненных последовательно. Фазные обмотки статора соединены звездой, и их выходные зажимы под­ключены к выпрямительному блоку 10.

Устройство генератора переменного тока Г-250

Корпус статора набран из отдельных пластин электротехнической стали. Обмотка возбуждения 4 генератора выполнена в виде катушки и по­мещена на стальной втулке клювообразных полю­сов ротора 13. Втулка, клювообразные полюсы ро­тора и контактные кольца 5 жестко закреплены на валу 3 ротора (прессовая посадка на накатку). Магнитное поле, создаваемое обмоткой возбуждения, проходя через торцы клювообразных полюсов, образует северные и южные полюсы на роторе (рис. 2) (Е.В. Михайловский, «Устройство автомобиля», с. 163).

При вращении ротора магнитное поле по­люсов ротора пересекает витки катушек обмотки статора, индуктируя в каждой фазе переменную э.д.с.

Схема выпрямления переменного тока

Ток в обмотке возбуждения подводится через щетки 8 (рис.1) и контактные кольца 5, к кото­рым припаяны концы обмотки возбуждения. Щёт­ки укреплены в щеткодержателе 9.

Статор генератора с помощью стяжных болтов закреплен между крышками 1 и 7, которые имеют кронштейны крепления генератора к двигателю. В крышке 1 со стороны привода вверху имеется резь­бовое отверстие для крепления натяжной планки, с помощью которой регулируется натяжение приводного ремня генератора. Крышки отлиты из алю­миниевого сплава.

С целью уменьшения износа посадочное место под шарикоподшипник в задней крышке 7 и отвер­стия в кронштейнах крышек армированы стальны­ми втулками.

В крышках установлены шариковые подшипники 2 и 12 с двусторонним уплотнением и смазкой, за­ложенной на весь срок службы подшипника.

На выступающий конец вала 3 ротора крепится наружный вентилятор 14 (рис. 1) и шкив 15. В крышках имеются вентиляционные окна, через которые проходит охлаждающий воздух. Направле­ние движения охлаждающего воздуха - от крыш­ки со стороны контактных колец к вентилятору.

В крышке со стороны контактных колец уста­навливается выпрямительный блок 10, собранный из кремниевых вентилей (диодов), допускающих рабочую температуру корпуса плюс 150°С.

Типы выпрямительных блоков

Выпрямительный блок ВБГ-1. (рис. 4) состоит из трех моноблоков, соединенных в схему двухполупериодного трехфазного выпрямителя

Каждые два вентиля выпрямителя размещены в моноблоке, выполняющем одновременно роль ра­диатора и токопроводящего зажила средней точки схемы 3. В корпусе моноблока-радиатора 4 имеются два гнезда, в которых собраны р-п-переходы выпрямительных вентилей. В одном гнезде р-п-переход имеет на корпусе р-зону, а в другом - п-зону. Противоположные зоны переходов имеют гибкие выводы 9, которые соединяют моноблок с соедини­тельными шинами 2. Отрицательная шина выпря­мительного блока соединена с корпусом генера­тора. В более поздних конструкциях выпрямительных блоков БПВ-4-45 (рис. 4,б) на ток 45 А применя­ют кремниевые вентили типа ВА-20, которые за­прессованы в теплоотводы 12 отрицательной и по­ложительной полярности по три вентиля в каждый. Теплоотводы изолированы один от другого пласт­массовыми втулками-изоляторами 13. Обратный ток вентилей не превышает 3 мА, а собранного блока -10 мА. Для генераторов с максимальной мощностью до 1200 B т (Г-228) применяют кремниевые выпрямительные блоки ВБГ-7-Г на ток 80 А (рис. 4, в) или БПВ-7-100. В блоках БПВ-7Т и БПВ-7-100 применены вентили ВА-20 по два параллельно в каждом плече, по шесть вентилей в каждом теплоотводе. Блок БПВ-7-100 на ток 100 A и его электрическая схема показаны на рис. 4, г.

Для снижения уровня радиопомех в блоках, ВБР-7-Г и, БПВ-7-100 установлен параллельно зажимам «+», и «-» генератора конденсатор ёмкостью 4,7 мкФ. Общий вид вентиля BA -20 показан на рис. 5. Номинальный ток вентиля 20 А. Для упро­щения схемы, электрических соединений вентили выпускаются в двух исполнениях - с прямой и обратной полярностью корпусам (рис. 5, б). В вентилях прямой полярности «+» выпрямленного будет на корпусе, в вентилях обратной полярнос­ти будет «-» выпрямленного тока.

Вентили прямой и обратной полярности различаются цветом маркировки, наносимой краской на донышке корпуса. Вентили прямой полярности: («+» на корпус) помечают красной краской, а вентили обратной полярности («-» на корпус) - черной.

Кремниевый вентиль ВА-20

Электрическая схема соединения обмоток гене­ратора и выпрямителей показана на рис 3, а. При вращении ротора генератора в каждой фазе индуктируется переменное напряжение изменение кото­рого за один период показано на рис. 3, б. После выпрямления кривые фазного напряжения примут вид изображенный на рис. 3,в. Выпрямленное напряжение будет почти постоянным, (линия 1 на рис. 3, в), причем частота пульсаций выпрямленного напряжения будет в шесть раз больше, чем частота в фазных обмотках (Ю.И. Боровских, «Устройство автомобилей», с. 183).

С увеличением, частоты вращения повышается частота тока, индуктированного в фазных отмотках генератора переменного тока , и возрастает индуктивное сопротивление обмоток. Поэтому при большой частоте, вращения ротора, когда генератор может отдавать максимальную мощность, не возни­кает опасности его перегрузки, поскольку сила тока генератора ограничивается повышенным индуктив­ным сопротивлением его обмоток. Это явление в генераторах переменного тока называется свойством самоограничения. Автомобильные генераторы Г-250, Г-270, Г-221 и другие сконструированы таким образом, что не нуждаются в ограничителе тока.

Свойство вентилей пропускать ток только в одном направлении (от генератора к аккумуляторной батарее) исключает необходимость установки в реле-регуляторе реле обратного тока. Таким образом, реле-регуляторе работающем с автомобильным генератором переменного тока , может применяться только регулятор напряжения. Это значительно упрощает конструкцию и снижает разме­ры, вес и стоимость реле-регулятора. Пути тока через вентили выпрямителя при прохождении обмотками первой фазы северного и южного полюсов ротора показаны на рис. 3, а стрелками. Как видно из схемы, при наличии в обмотках первой фазы переменного по направлению тока ток в цепи нагрузки (Rн) будет постоянным. Аналогично происходит процесс и в других фазах.

II. Т.О. ГЕНЕРАТОРА

Отказами и неисправностями генератора являются: обрыв или короткое замыкание в обмотке статора генератора или в обмотке возбуждения, нарушение контакта щеток с кольцами и искрение щеток, износ подшипников генератора, поломка или ослабление пружины щеткодержателей, пробой диодов в выпрямителе, ослабление натяжения (чрезмерное натяжение) приводного ремня.

Неисправности генератора обнаруживаются по показаниям амперметра или сигнальной лампы. Амперметр при неисправном генераторе будет показывать разряд, а сигнальная лампа будет гореть при работающем двигателе. Нарушение контакта щеток с кольцами возникает от загрязнения, обгорания или их износа, выкрашивания или износа щеток, а также ослабления или поломки нажимных пружин щеток. Загрязнение кольца следует протереть чистой тряпкой, обгоревшие кольца прочистить стеклянной бумагой, изношенную щетку заменить новой и притереть ее по кольцу.

III. ДИАГНОСТИКА ГЕНЕРАТОРА

Диагностирование генераторов сводится к проверке ограничивающего напряжения и работоспособности генератора. Для выполнения этой операции необходимо включить вольтметр параллельно потребителям тока. Ограничивающее напряжение проверяют при включенных потребителях тока (подфарниках и габаритных фонарях) и повышенной частоте вращения коленчатого вала двигателя. Оно должно быть в диапазоне 13,5-14,2 В. Работоспособность генератора оценивают по напряжению при включении всех потребителей на частоте вращения, соответствующей полной отдаче генератора, которое должно быть не ниже 12 В. Однако подобная методика проверки не может выявить характерные, хотя и редко встречающиеся неисправности генератора, такие, как обрыв или замыкание обмоток статора на массу, обрыв или пробой диодов выпрямителя, ввиду значительных резервов работоспособности генератора.

Эти неисправности легко выявляются по характерному виду осциллограмм, связанному в первую очередь с увеличением диапазона колебания напряжения. При исправной работе генератора диапазон колебаний напряжения в сети не превышает 1-1,2 В, который обусловливается периодическим включением в цепь нагрузки первичной обмотки катушки зажигания. Это легко читается по осциллограмме осциллографа мотортестера (Элкон S -300, Элкон S -100А, К-461, К-488).

При одном пробитом (закороченном) диоде в результате его выпрямляющих свойств диапазон колебания напряжения возрастает до 2,5-3 В. при общем снижении частоты его колебаний. Средний уровень напряжения, показываемый вольтметром, при этом не меняется, однако выбросы напряжения приводят к снижению долговечности аккумуляторной батареи и других элементов электрооборудования (В.Л. Роговцев, «Устройство и эксплуатация автотранспортных средств», с.391).

Таким образом, одновременное применение осциллографа и вольтметра позволяет быстро и объективно проводить диагностирование генераторов и реле-регуляторов переменного тока . Повышение напряжения генератора более расчетного на 10-12% снижает срок службы аккумуляторной батарей в 2-3 раза.

Неисправный генератор заменяют или ремонтируют в условиях электроцеха, ограничивающее напряжение реле-регулятора регулируют натяжением пружины якорька, а при отсутствии таковой возможности реле-регулятор также заменяют. Бесконтактно-транзисторные реле-регуляторы регулируют только в условиях электроцеха.

29 ЭЛЕКТРИЧЕСКИЕ ГЕНЕРАТОРЫ ПЕРЕМЕННОГО ТОКА

Научные направления, исследования в которых оказались так же плодотворны, как в области токов высокой частоты, немногочисленны. Уникальные свойства этих токов и поразительная природа явлений, которые они продемонстрировали, незамедлительно завладели всеобщим вниманием. интерес к исследованиям в этой области проявили ученые, перспективой их промышленного применения заинтересовались инженеры, а врачи увидели в них долгожданное средство эффективного лечения телесных заболеваний. С того момента, когда были опубликованы мои первые научно-исследовательские работы в 1891 году, написаны сотни томов на эту тему, сделано бесчисленное множество выводов в связи с этим новым явлением. Тем не менее это научно-техническое направление находится в периоде становления, и будущее хранит в своих недрах нечто несравнимо более значительное.

Я с самого начала осознавал настоятельную необходимость создания эффективных приборов, отвечающих быстрорастущим требованиям, и в течение восьми лет, последовательно выполняя высказанные ранее обещания, разработал не менее пятидесяти типов преобразователей, или электрических генераторов, переменного тока, безупречных во всех отношениях и доведенных до такой степени совершенства, что и сейчас ни в один из них не смог бы внести каких-либо существенных улучшений. Если бы я руководствовался практическими соображениями, возможно, открыл бы великолепное и приносящее доход дело, оказывая попутно значительные услуги человечеству. Но сила обстоятельств и невиданные ранее перспективы еще более значительных достижений направили мои усилия в другое русло. И теперь всё идет к тому, что в скором времени на рынке будут продаваться приборы, которые, как это ни странно, были созданы двадцать лет тому назад!

Эти генераторы специально предназначены для того, чтобы работать в осветительных сетях постоянного и переменного тока, создавать затухающие и незатухающие колебания с частотой, амплитудой и напряжением, устанавливаемыми в широком диапазоне. Они компактны, автономны, в течение долгого времени не нуждаются в обслуживании и будут считаться очень удобными и полезными в различных областях, например, для беспроволочного телеграфа и телефона; для преобразования электрической энергии; для образования химических соединений путем слияния и присоединения; для синтеза газов; для производства озона; для освещения, сварки, санитарной профилактики и дезинфекции муниципальных, лечебных и жилых помещений, а также для многих других целей в научных лабораториях и на промышленных предприятиях. Хотя эти преобразователи никогда ранее не были описаны, общие принципы их устройства изложены в полном объеме в моих публикациях и в патентах, более подробно в датированых 22 сентября 1896 года, и поэтому, думается, несколько прилагаемых фотографий и сопутствующее краткое пояснение дадут исчерпывающую информацию, если таковая потребуется.

Основными частями такого генератора являются конденсатор, катушка самоиндукции для накопления высокого потенциала, прерыватель и трансформатор, который питается от периодических разрядов конденсатора. Устройство включает в себя как минимум три, а обычно четыре, пять или шесть элементов настройки; регулирование эффективности осуществляется несколькими способами, чаще всего с помощью простого юстировочного винта. При благоприятных условиях можно получить КПД до 85 %, то есть можно сказать, что энергия, поступающая от источника питания, может быть регенерирована во вторичном контуре трансформатора. Если главное достоинство аппарата такого типа явно обусловлено замечательными возможностями конденсатора, то определенные специфические качества являются следствием образования последовательного контура при условии соблюдения точных гармонических соотношений и минимизации потерь на трение, а также иных потерь, что и является одной из основных целей этого проекта.

Говоря обобщенно, приборы можно разделить на два класса: один, в котором прерыватель имеет твердые контакты, и другой, в котором замыкание и размыкание осуществляются с помощью ртути. Иллюстрации с 1 по 8 включительно демонстрируют первый тип, а остальные - второй. Первые способны достигать более высокой эффективности с учетом того, что потери от замыкания и размыкания снижены до минимума, и переходное сопротивление, вызывающее затухание колебаний, мало. Вторые предпочтительнее использовать в тех случаях, когда требуется большая мощность на выходе и большое число размыканий в секунду. двигатель и прерыватель потребляют, конечно, определенное количество энергии, доля которой, однако, будет тем меньше, чем больше мощность установки.

На иллюстрации 1 представлен один из первых типов генераторов, построенный для экспериментальных целей. Конденсатор помещен в ящик прямоугольной формы из красного дерева, на который монтируется катушка самоиндукции, витки которой, подчеркиваю, разделены на две секции, соединяемые параллельно или последовательно в зависимости от напряжения питания в 110 или 220 вольт. Из ящика выступают четыре медных стержня с укрепленной на них пластиной с пружинными контактами и регулировочными винтами; над ящиком помещены два массивных вывода, соединенных с первичной обмоткой трансформатора. Два стержня предназначены для соединения с конденсатором, а два других используются для подсоединения к клеммам выключателя перед катушкой самоиндукции и конденсатором. Первичная обмотка трансформатора состоит из нескольких витков медной ленты, к концам которой припаяны короткие штыри, точно соответствующие предназначенным для них выводам. Вторичная обмотка состоит из двух частей, намотанных таким образом, чтобы максимально снизить собственную емкость и в то же время дать возможность катушке выдерживать очень высокое напряжение между ее выводами в центре, которые соединены с клеммами на двух выступающих резиновых стойках. Порядок соединений в цепи может несколько варьироваться, но обычно они таковы, как схематично представлены в майском номере «Electrical Experimenter» на странице 89, где идет речь о моем трансформаторе, предназначенном для работы в генераторах переменного тока, фотоснимок которого помещен на странице 16 того же номера журнала. Принцип действия устройства заключается в следующем. Когда выключатель включен, ток от источника питания устремляется через катушку самоиндукции, намагничивая железный сердечник внутри нее и разъединяя контакты прерывателя. наведенный ток заряжает конденсатор до высокого напряжения, и после замыкания контактов аккумулированная энергия сбрасывается через первичную обмотку, вызывая продолжительную серию колебаний, которые возбуждают настроенную вторичную обмотку.

Ил. 1. Генератор, созданный для экспериментальных целей

Устройство оказалось чрезвычайно полезным в проведении всевозможных лабораторных экспериментов. Например, при исследовании явлений импеданса трансформатор был снят, а к выводам подключена согнутая медная пластина. Пластина часто заменялась большим кольцевым витком, чтобы продемонстрировать явления индукции на расстоянии, то есть способность возбуждать резонансные контуры, используемые в различных исследованиях и измерениях. Трансформатор, пригодный для любого применения, можно легко изготовить и присоединить к любым входам, тем самым достигалась большая экономия времени и труда. Вопреки предположениям состояние контактов прерывателя не доставляло больших неприятностей, несмотря на то, что сила тока, проходившего через них, была большой, то есть при наличии резонанса сильный ток возникал только в том случае, когда контур был замкнут, и исключалась возможность образования разрушительной дуги. Первоначально я применял платиновые и иридиевые контакты, позднее заменил материал метеоритным веществом и в конце концов остановился на вольфраме. Последний принес наибольшее удовлетворение, поскольку допускал непрерывную работу в течение многих часов и дней.

На иллюстрации 2 представлен малый генератор, спроектированный для некоторых специальных целей. В основу разработки легла идея получения больших энергий за очень короткий промежуток времени после сравнительно длительной паузы. Для этой цели использовались катушка с большой самоиндукцией и прерыватель быстрого действия. Благодаря такому построению конденсатор заряжался до высокого потенциала. Во вторичной обмотке были получены быстропеременный ток и искровые разряды большой величины, пригодные для сварки тонких проводов, для засвечивания ламп накаливания, для запала взрывчатых смесей и других подобных применений. Этот прибор был также приспособлен для питания от батарей, и эта модификация оказалась весьма эффективной в качестве запальника для газовых двигателей, на которую мне был предоставлен патент за номером 609250 от 16 августа 1898 года. Иллюстрация 3 представляет большой генератор первого класса, предназначенный для экспериментов в области беспроводной передачи, получения рентгеновских лучей и других научных исследований. Он состоит из ящика и двух помещенных внутри него конденсаторов, имеющих такую емкость, какую могут выдержать заряжающая катушка и трансформатор. Автоматический прерыватель, ручной выключатель и соединительные клеммы смонтированы на передней панели катушки самоиндукции так же, как и одна из контактных пружин. Корпус конденсатора имеет три вывода, из которых два крайних служат только для соединения, в то время как средний снабжен контактной пластинкой с винтом для регулирования интервала, во время которого контур замкнут. Вибрирующую пружину, единственная функция которой состоит в том, чтобы вызывать периодические размыкания, можно настраивать, изменяя степень ее сжатия, а также расстояние от железного сердечника, находящегося в центре заряжающей катушки, с помощью четырех регулировочных винтов, которые видны на верхней панели, что обеспечивает любой желаемый режим механической настройки. Первичная обмотка трансформатора выполнена из медной полосы, и в соответствующих точках сделаны выводы для произвольного варьирования числа витков. Так же, как в осцилляторе, представленном на иллюстрации 1, катушка самоиндукции имеет двухсекционную обмотку, чтобы прибор мог работать от сети напряжением в 110 и 220 вольт; было также предусмотрено несколько вторичных обмоток, соответствующих волнам различной длины в первичной обмотке. Мощность на выходе составляла приблизительно 500 ватт при затухающих колебаниях около 50.000 периодов в секунду. Незатухающие колебания появлялись на короткие промежутки времени при сжимании вибрационной пружины, которая плотно прижималась к железному сердечнику, и при разъединении контактов с помощью регулирующего винта, который выполнял и функцию ключа. С помощью этого генератора я произвел ряд важных наблюдений, и именно одна из таких машин была представлена на лекции в Нью-Йоркской академии наук в 1897 году.

Ил. 2. Малый генератор колебаний Теслы, разработанный как запальник для газовых двигателей

Ил. 3. Большой генератор колебаний Теслы, предназначенный для проведения экспериментов по беспроводной передаче

Ил. 7 . Большой трансформатор Теслы

Ил. 8. Преобразователь с роторным прерывателем, используемый для экспериментов в области беспроводной передачи

Иллюстрация 4 демонстрирует тип трансформатора, во всех отношениях идентичный тому, что был представлен в уже упоминавшемся майском номере "Electrical Experimenter" за 1919 год. Он состоит из тех же самых основных деталей, размещенных аналогичным образом, но он специально сконструирован для источников питания от 220 до 500 вольт и выше. Настройка осуществляется путем установки контактной пружины и перемещения железного сердечника вверх и вниз внутри индукционной катушки с помощью двух регулировочных винтов. Для предотвращения повреждений от короткого замыкания в линию питания включены плавкие предохранители. Во время фотосъемки прибор работал, генерируя незатухающие колебания, от осветительной сети в 220 вольт.

Иллюстрация 5 представляет более позднюю модификацию трансформатора, предназначавшегося главным образом для замены катушек Румкорфа. В этом случае применяется первичная обмотка со значительно большим числом витков, а вторичная находится в непосредственной близости от нее. токи, образующиеся в последней, напряжением от 10.000 до 30.000 вольт используются обычно для зарядки конденсаторов и питания автономной высокочастотной катушки. Механизм управления устроен несколько иначе, но обе детали - и сердечник, и контактная пружина - регулируются, как и прежде.

Иллюстрация 6 демонстрирует небольшой прибор из серии такого рода устройств, предназначенный, в частности, для производства озона или дезинфекции. Для своих габаритов он в высшей степени эффективен и может быть подключен к сети напряжением в 110 или 220 вольт постоянного или переменного тока , первое предпочтительнее.

Ил. 9. Трансформатор и ртутный прерыватель

Ил. 10. Большой преобразователь Теслы с герметичной камерой и ртутным контроллером

На иллюстрации 7 показан более крупный трансформатор этой серии. Конструкция и компоновка составных частей остались прежними, но в корпусе имеются два конденсатора, один из которых входит в цепь катушки, как и в предыдущих моделях, в то время как другой подключен параллельно к первичной обмотке. Таким образом, в последней образуются токи большой силы и, следовательно, усиливаются эффекты во вторичной цепи. Введение дополнительного резонансного контура дает также другие преимущества, но настройка оказывается более трудным делом, и поэтому желательно использовать прибор такого рода для получения токов заданной постоянной частоты.

Ил. 11. Генератор Теслы с герметично закрытым ртутным прерывателем , сконструированным для генераторов низкого напряжения

Ил. 13. Другой вид преобразователя переменного тока с герметично запаянным ртутным прерывателем

Ил. 14. Схема и компоновка деталей модели, представленной на иллюстрации 13

Иллюстрация 8 показывает трансформатор с роторным прерывателем. В корпусе имеются два конденсатора одинаковой емкости, которые могут соединяться последовательно или параллельно. Заряжающие индуктивности имеют форму двух длинных бобин, на которых помещаются два вывода вторичного контура. Для приведения в действие специально сконструированного прерывателя применяется небольшой мотор постоянного тока, число оборотов которого может варьироваться в широких пределах. По другим характеристикам этот генератор подобен модели, представленной на иллюстрации 3, и из вышесказанного легко можно понять, как он работает. Этот трансформатор использовался мной в опытах по беспроводной передаче и часто для освещения лаборатории моими вакуумными трубками, а также экспонировался во время упомянутой выше лекции, которую я читал перед Нью-Йоркской академией наук.

Теперь перейдем к машинам второго класса, одной из которых является преобразователь переменного тока, показанный на иллюстрации 9. в его схему входят конденсатор и заряжающая индукционная катушка, которые помещены в одну камеру, трансформатор и ртутный прерыватель. Конструкция последнего была впервые описана в моем патенте № 609251 от 16 августа 1898 года. он состоит из приводимого в движение электродвигателем полого барабана с небольшим количеством ртути внутри него, которая отбрасывается центробежной силой на стенки полости и увлекает за собой контактный диск, периодически замыкающий и размыкающий конденсаторную цепь. С помощью регулировочных винтов над барабаном можно по желанию менять глубину погружения лопастей, следовательно, продолжительность каждого контакта, и таким образом регулировать характеристики прерывателя. Этот вид прерывателя удовлетворял всем требованиям, так как исправно работал с токами силой от 20 до 25 ампер. Число прерываний в секунду составляло обычно от 500 до 1000, но возможна и более высокая частота. всё устройство имеет габариты 10 дюймов х 8 дюймов х 10 дюймов, и выходная мощность составляет приблизительно 1 / 2 кВт.

В описанном здесь преобразователе прерыватель подвержен воздействию атмосферы и происходит постепенное окисление ртути. От этого недостатка избавлен прибор, представленный на иллюстрации 10. Он имеет перфорированный металлический корпус, внутри которого размещаются конденсатор и заряжающая индукционная катушка, а над ним находятся мотор прерывателя и трансформатор.

Ил. 15 и 16. Преобразователь Теслы с герметично закрытым ртутным прерывателем , работа которого регулируется силой тяжести; узлы электродвигателя и прерывателя

Тип ртутного прерывателя, который будет описан, действует по принципу реактивной струи, которая, пульсируя, создает контакт с вращающимся диском внутри барабана. Неподвижные детали закреплены внутри камеры на штанге, проходящей по всей длине полого барабана, и ртутный затвор используется для герметичного закрытия камеры, внутри которой находится прерыватель. Прохождение тока внутрь барабана осуществляется посредством двух скользящих колец, расположенных сверху, которые соединены последовательно с конденсатором и первичной обмоткой. Исключение кислорода является бесспорным усовершенствованием, которое устраняет окисление металла и связанные с этим трудности и постоянно поддерживает рабочий режим.

На иллюстрации 11 показан генератор с герметически закрытым ртутным прерывателем . В этом устройстве неподвижные части прерывателя внутри барабана укреплены на трубке, сквозь которую пропущен изолированный провод, присоединенный к одному выводу выключателя, в то время как другой вывод подключен к резервуару. Это делало ненужными скользящие кольца и упрощало конструкцию. Прибор сконструирован для генераторов с низким напряжением и частотой, что требует сравнительно небольшого тока в первичной обмотке, использовался для возбуждения резонансных контуров.

Иллюстрация 12 представляет усовершенствованную модель генератора колебаний, описание которой дано к иллюстрации 10. В этой модели была ликвидирована несущая штанга внутри полого барабана, и устройство, нагнетающее ртуть, удерживается на месте под действием силы тяжести. Более подробное описание будет приведено в связи с другой иллюстрацией. И емкость конденсатора, и количество витков первичного контура можно менять, чтобы иметь возможность генерировать колебания в нескольких частотных режимах.

Иллюстрация 13 являет собой фотографическое изображение еще одного типа генератора переменного тока с герметически закрытым ртутным прерывателем , а иллюстрация 14 представляет собой схему цепей и компоновку частей, которые воспроизведены из моего патента № 609245 от 16 августа 1898 года, где описывается именно это устройство. Конденсатор, индукционная катушка, трансформатор и прерыватель размещены, как и прежде, но последний имеет конструктивные отличия, что станет ясным после рассмотрения этой схемы. Полый барабан а соединен с осью с, которая смонтирована с вертикальным подшипником и проходит через постоянный электромагнит возбужденияd двигателя. Внутри барабана на подшипниках качения укреплено тело h из магнитного вещества, защищенного колпаком b в центре пластинчатого железного кольца, с полюсными наконечниками оо, на которых имеются подключенные к току спирали р. Кольцо поддерживается четырьмя стойками, и в намагниченном состоянии оно удерживает тело h в одном положении во время вращения барабана. Последний изготовлен из стали, а колпак лучше сделать из нейзильбера, черненного кислотой или никелированного. Телоh имеет короткую трубку k, согнутую, как показано, для улавливания жидкости в процессе ее вращения и выбрасывания на зубья диска, прикрепленного к барабану. Диск имеет изоляцию, а контакт между ним и внешним контуром осуществляется посредством ртутной воронки. При быстром вращении барабана струя жидкого металла выбрасывается на диск, замыкая и размыкая таким способом контакт приблизительно 1.000 раз в секунду. Прибор работает бесшумно и благодаря отсутствию окисляющей среды остается неизменно чистым и в отличном состоянии. Возможно тем не менее добиться гораздо большего числа колебаний в секунду для того, чтобы сделать токи пригодными для беспроводной телефонии, и других подобных целей.

Модифицированный тип генератора колебаний представлен на иллюстрациях 15 и 16, первая является фотографическим изображением, а вторая - схемой, показывающей компоновку внутренних частей регулятора. В данном случае вал b . несущий пустотелый контейнер а, опираясь на подшипники качения, соединен со шпинделем j . к которому прикреплен груз k. изолированный от последнего, но механически с ним соединенный, согнутый кронштейн L служит опорой свободновращающемуся диску прерывателя с зубцами. Диск подсоединен к внешнему контуру посредством ртутной воронки и изолированного штепселя, выступающего из верхней части вала. Благодаря наклонному положению электродвигателя груз k удерживает диск прерывателя на месте силой тяжести, и, поскольку вал вращается, контур, состоящий из конденсатора и первичной катушки, быстро замыкается и размыкается.

Ил. 17. Преобразователь Теслы с прерывающим устройством в виде струи ртути

Иллюстрация 17 демонстрирует идентичный прибор, в котором прерыватель представляет собой струю ртути, бьющую в изолированное зубчатое колесо, которое находится на изолированном штыре в центре колпака барабана, как это видно на снимке. Соединение с конденсатором осуществляется посредством щеток, находящихся на этой же крышке.

Иллюстрация 18 - тип преобразователя с ртутным прерывателем с применением диска, модифицированного в некоторых деталях, которые необходимо внимательно рассмотреть.

Здесь представлено лишь несколько преобразователей переменного тока, работа над которыми завершена, и они составляют малую часть высокочастотной аппаратуры, подробное описание которой я надеюсь представить позже, когда буду свободен от неотложных обязательств.

Ил. 18. Преобразователь Теслы с ртутным прерывателем с применением диска

Генератор переменного тока

Описание :

Генератор переменного тока. Устройство и принцип работы.

Человечество уже больше века использует электричество во всех сферах деятельности. Без него просто невозможно представить себе нормальной жизни. С помощью специальных машин механическая энергия преобразуется в переменный или постоянный ток. Чтобы лучше понять, как это происходит, необходимо разобраться, из чего состоит генератор и как он работает.

Превращение механической энергии в электрическую

В основе работы любого генератора лежит принцип магнитной индукции . Первые электрические машины появились во второй половине XIX века. Их изобретателями стали Майкл Фарадей и Ипполит Пикси. В 1886 году прошла публичная демонстрация альтернатора - устройства, способного вырабатывать ток из механического движения.

Первый трехфазный генератор переменного тока разработал россиянин Доливо-Добровольский. Он же в 1903 году сооружает самую первую на Земле электростанцию промышленного значения, ставшую источником питания для элеватора.

Простейшая схема генератора переменного тока представляет собой проволочную катушку, совершающую вращение в магнитном поле. Альтернативный вариант - когда катушка остаётся недвижима, а её пересекает магнитное поле. В обоих случаях будет вырабатываться электрическая энергия. Пока продолжается движение, в проводнике вырабатывается переменный ток. Генераторы применяются для выработки тока во всем мире. Они являются частью глобальной системы электроснабжения Земного шара.

То как устроен генератор, зависит от его назначения, и возможны различные модификации. Однако существуют две основные составляющие:

  1. Ротор - подвижный элемент, изготовленный из цельного железа.
  2. Статор - неподвижный, он собирается из изолированных железных листов. Внутри на нём есть пазы, в которых проходит проволочная обмотка.

Чтобы получить наибольшую магнитную индукцию, расстояние между этими частями агрегата должно быть как можно меньшим. Обмотка возбуждения, находящаяся на роторе, питается через систему щёток.


Выделяются два типа конструкции:

  • с вращающимся якорем и неподвижным магнитным полем;
  • магнитное поле вращается, а якорь остаётся на месте.

Наибольшее применение получили машины с подвижными магнитными полюсами. Гораздо удобнее снимать электричество со статора, нежели с ротора. В целом генератор построен так же, как электродвигатель.

Классификация и виды агрегатов

Агрегаты для преобразования механической энергии в электрическую имеют сходную конструкцию. Они могут различаться принципом действия генератора и обмотки возбуждения:

По конструкции:

  • явно выраженные полюса;
  • не выраженные.

По способу соединения обмоток:

В зависимости от количества фаз:

  • однофазные;
  • двухфазные;
  • трехфазные.

Агрегаты постоянного тока устроены таким образом, что механизм для съёма энергии состоит из двух изолированных полуколец, на каждое из которых поступает заряд определённого потенциала. На выходе получается пульсирующий ток одной направленности.

Синхронные генераторы имеют якорь с обмоткой, на которую подаётся постоянный ток. Регулируя его величину, можно изменять силу магнитного поля и контролировать напряжение на выходе. В асинхронных нет обмотки, вместо этого используется эффект намагничивания.

Основные сферы применения

Стоит помнить о том, что обычное электричество в розетках появляется благодаря работе огромных генераторов переменного тока на тепловых электростанциях. Сфера использования этих электрических машин включает в себя все виды деятельности человека:

  • используются в качестве резервного источника энергии на объектах, где нельзя допускать перебоев электроснабжения;
  • незаменимы в местах, где отсутствуют линии электропередачи;
  • бо́льшая часть транспортных средств снабжена генератором, он вырабатывает электричество для бортовой сети;
  • питание установок для гидролиза;
  • промышленность;
  • на атомных и гидроэлектростанциях.

В последнее время всё большую популярность набирают бытовые агрегаты для выработки электроэнергии. Они отличаются компактными размерами и малым потреблением топлива. Могут работать на бензине и на дизеле. Применяются в походных условиях, на даче или как аварийный источник питания.

Изобретение способа получения электричества из механического движения имело эпохальное значение для развития современной цивилизации. Окружающий мир полон загадок, ответы на которые неизвестны, но, возможно, людей ждут и другие важные открытия, способные изменить жизнь.



Просмотров