Радиорелейные линии связи — особенности, применение. Современная радиорелейная связь

Радиорелейная связь (от радио и французского relais – промежуточная станция), радиосвязь, осуществляемая при помощи цепочки приемо-передающих радиостанций, как правило, отстоящих друг от друга на расстоянии прямой видимости их антенн. Таким образом, радиорелейная связь – это особый вид радиосвязи на ультракоротких волнах с многократной ретрансляцией сигнала .

Радиорелейная связь первоначально применялась для организации многоканальных линий телефонной и телевизионной связи, в которых сообщения передавались с помощью аналогового электрического сигнала. Одна из первых таких линий протяженностью 200 км с 5 телефонными каналами появилась в США в 1935 году. Она соединяла Нью-Йорк и Филадельфию.
В 1932–1934 г.г. в СССР была разработана приёмопередающая аппаратура, работающая на метровых волнах, и созданы опытные линии связи Москва–Кашира и Москва–Ногинск. Первое отечественное оборудование «Краб», используемое на линии радиорелейной связи через Каспийское море, между Красноводском и Баку (1953–1954 гг.), работало в метровом диапазоне.

В те годы для радиорелейных линий считалось наиболее целесообразным применение импульсной модуляции, техника которой была хорошо освоена в радиолокации, одновременно с временным уплотнением. Казалось, что при тогдашнем уровне развития технологий это сулит большие преимущества. Но цикл теоретических исследований и экспериментальных проработок, проведенных в Научно-исследовательском институте радио, подтвердил складывающееся в то время у специалистов в области радиорелейной связи мнение, что сочетание частотной модуляции с частотным уплотнением позволит создать линии, не уступающие даже наиболее совершенным коаксиальным кабельным системам. Надо подчеркнуть, что сказанное относится к концу 1940-х – началу 1950-х годов. А поскольку, как известно, развитие общества и науки идет по спирали, то сегодня современные новейшие технологии позволили вернуться к цифровым методам передачи на более высоком уровне – передача данных, цифровая телефония и телевидение.

В середине 50–х годов прошлого века в России было разработано семейство радиорелейной аппаратуры «Стрела» , работавшей в диапазоне 1600-2000 МГц: «Стрела П» – для пригородных линий, обеспечивающих передачу 12 телефонных каналов; «Стрела Т» – для передачи одной телевизионной программы на расстояние 300–400 км и «Стрела М» – для магистральных линий емкостью 24 канала и протяжённостью до 2500 км. На аппаратуре «Стрела» был построен ряд первых отечественных радиорелейных линий (РРЛ). Вот некоторые из них: Москва – Рязань, Москва – Ярославль – Нерехта – Кострома –Иваново, Фрунзе – Джалал Абад, Москва – Воронеж, Москва – Калуга, Москва – Тула.

Следующая разработка для РРЛ – аппаратура Р-60/120. Она позволяла создавать 3–6-ствольные магистральные линии длиной до 2500 км для передачи 60–120 телефонных каналов и на дальности до 1000 км для передачи телевизионных программ с выполнением рекомендаций МККТ и МККР по качественным показателям. Радиорелейные линии на базе аппаратуры Р–60/120 были построены в различных районах СССР. Одной из первых и, пожалуй, самой протяженной была линия Москва – Ростов-на-Дону. Оборудование типа Р-60/120, работавшее в диапазоне 2 ГГц, было предназначено для внутризоновых РРЛ.

Чтобы передавать телевизионные сигналы на большие расстояния, а также сигналы телефонных каналов, нужно было создать радиорелейное оборудование магистральных РРЛ.

Магистральным РРЛ были выделены соответствующие полосы частот в диапазонах 4 и 6 ГГц. В таких диапазонах, при одинаковых габаритных размерах антенн и прочих равных условиях, излучаемая в эфир мощность увеличивается в 2,5–3 раза за счёт большого коэффициента усиления антенны. Это было весьма существенно для достижения необходимых качественных показателей передаваемых сигналов телевидения и многоканальной телефонии. Первой отечественной радиорелейной системой магистральной радиорелейной связи была система Р-600 , работающая в диапазоне 4 ГГц. Первая магистральная радиорелейная линия Ленинград–Таллин, оборудованная аппаратурой Р-600, была построена в 1958 г., после этого началось их серийное производство.

Система и аппаратура Р-600 послужили основой дальнейшего совершенствования радиорелейного оборудования для магистральных РРЛ. В период 1960-1970 г.г. были разработаны, произведены и внедрены в эксплуатацию новые виды оборудования семейства Р-600: Р-600М, Р-6002М, Р-600-2МВ и «Рассвет», также работающие в диапазоне 4 ГГц. В телевизионном стволе обеспечивалась передача видеосигнала и сигнала звукового сопровождения. Основные технические показатели этих систем приведены в табл. 6.1.

Таблица 6.1

Параметр

«Рассвет»

Диапазон частот, ГГц

Поучастковая система резервирования

Мощность передатчика, Вт

Коэффициент шума приёмника, дБ

Емкость ТФ ствола, каналов ТЧ

Важнейшей разработкой, проводившейся в СССР в середине 60-х годов, было создание магистральной радиорелейной системы большой ёмкости «Восход». Она предназначалась, в первую очередь, для РРЛ Москва – Дальний Восток. Разработка системы связи, радиоаппаратуры, источников гарантированного электропитания, системы резервирования и методов контроля качества работы аппаратуры проводилась с учётом обеспечения высокой надёжности линии. Расчётный коэффициент исправного действия линии протяжённостью 12 500 км составлял 0,995, а потеря достоверности при передаче бинарной информации без кодовой защиты – не более . Сверхвысокочастотная (СВЧ) приёмопередающая аппаратура «Восход» работала в полосе частот 3400-3900 МГц. Все активные элементы аппаратуры «Восход» были выполнены на полупроводниковых приборах, исключение составляли СВЧ выходные ступени передатчиков и гетеродинных трактов, где использовались лампы бегущей волны (ЛБВ).

Для обеспечения высокой надежности в системе «Восход» было предусмотрено применение разнесенного по высоте приёма с быстродействующей системой автоматического выбора и параллельная работа передатчиков. Система разнесенного приёма, весьма эффективно решая задачу борьбы с замиранием сигналов на интервалах РРЛ, одновременно позволяла автоматически резервировать приёмники станции. Параллельная работа передатчиков обеспечивала их автоматическое резервирование и удвоение выходной мощности передатчиков, которая в аппаратуре «Восход» составляла 10 Вт. Вся система автоматического резервирования приёмопередающего оборудования замыкалась в пределах каждой станции, поэтому в «Восходе» не было необходимости передавать по служебным каналам какие-либо сигналы для управления работой системы резервирования (как это имеет место в радиорелейных системах с поучастковой системой резервирования стволов). Таким образом, особенностью системы «Восход» являлось отсутствие специального резервного ствола, что позволяло сделать все радиостволы рабочими и, следовательно, лучше использовать отведенную для системы полосу радиочастот.

В системе «Восход» было предусмотрено 8 широкополосных рабочих стволов, из которых 4 предназначались для работы на основном магистральном направлении и 4 – на ответвлениях или пересекающих магистралях. Все стволы универсальны, одинаково пригодны как для передачи сигналов многоканальной телефонии, так и для передачи сигналов телевизионных программ.

Телефонный ствол системы обеспечивал передачу сигналов 1920 каналов ТЧ в случае, когда аппаратура промежуточных станций размещалась в кабинах наверху башни (т. е. при коротких волноводах), а аппаратура узловых и оконечных станций – в наземных помещениях. Пропускная способность телефонного ствола при размещении аппаратуры в наземных помещениях на всех станциях составляла 1020 каналов ТЧ. В нижней части группового спектра телефонного ствола обеспечивалась передача сигналов служебной связи и дистанционного обслуживания (телеобслуживания). Система телеобслуживания позволяла иметь до 16 автоматизированных промежуточных станций между соседними узловыми станциями.

Телевизионный ствол системы давал возможность передавать видеосигнал и четыре канала тональных (звуковых) частот, организованных на поднесущих частотах и расположенных выше спектра видеосигнала. Эти тональные звуковые каналы использовались как для передач сигналов звукового сопровождения телевидения, так и радиовещания.

Следующим важным этапом в развитии техники радиорелейной связи стала разработка в 1970 году комплекса унифицированных радиорелейных систем связи «КУРС». Комплекс охватывал четыре системы связи, работающие в диапазонах 2, 4, 6 и 8 ГГц. Аппаратура в диапазонах 4 и 6 ГГц предназначалась для магистральных радиорелейных линий (РРЛ), а в диапазонах 2 и 8 ГГц – для зоновых РРЛ.

В приёмопередающей аппаратуре различных диапазонов частот широко использовались унифицированные узлы и блоки (УПЧ, умножители частоты и т. п.). Все они были выполнены на наиболее совершенных для того времени полупроводниковых приборах и других комплектующих изделиях отечественного производства.

Аппаратура КУРС-4 и КУРС-6 отличалась от предыдущих разработок и своей компактностью. Например, в системе КУРС-4 в одной стойке шириной 600 мм размещалось 4 приёмника или 4 передатчика. В табл. 6.2 приведены основные технические характеристики магистральных систем КУРС–4 и КУРС–6.

Таблица 6.2

Тип
аппаратуры

Полоса
частот, ГГц

Число стволов

Вид информа-ции

Число каналов ТЧ

Мощ-ность Пд, Вт

Шум-фак-тор Пм, дБ

Мощ-ность,
потреб-ляемая, Вт

3 + 1 или 7 + 1

3 + 1 или 7 + 1

К середине 70-х годов в стране была построена уникальная радиорелейная линия, протяженность которой составляла около 10 тыс. км, емкостью каждого ствола, равной 14 400 каналов тональной частоты. В эти годы суммарная протяженность радиорелейных линий в СССР превысила 100 тыс. км.

Последней разработкой в СССР для магистральной радиорелейной связи было создание нового поколения оборудования «Радуга». В его состав вошли: приёмопередающее оборудование, работающее в диапазоне 4 ГГц – «Радуга- 4»; приёмопередающее оборудование, работающее в диапазоне 6 ГГц – «Радуга- 6»; оборудование резервирования «Радуга».

Для «Радуги» было разработано новое поколение унифицированного оборудования «Рапира-М», включающего: оконечную аппаратуру телефонных и телевизионных стволов; ЧМ-модемы; аппаратуру служебной связи и телеобслуживания.

Магистральная радиорелейная система «Радуга-Рапира-М» позволяла создавать магистральные РРЛ в двух диапазонах частот: 4 ГГц (в полосе частот 3400–3900 МГц) и 6 ГГц (в полосе частот 5670–6170 МГц).

В каждом диапазоне возможна организация до семи рабочих стволов и одного резервного ствола. По каждому из рабочих стволов обеспечивалась:
в режиме передачи многоканальной (аналоговой) телефонии – передача сигналов 1920 каналов ТЧ и при необходимости дополнительно – 48 каналов ТЧ в спектре 60–252 кГц, а также передача в одном из телефонных стволов сигналов служебной связи в спектре 0,3–52 кГц, которые необходимы для нормальной работы РРЛ;

В режиме передачи телевидения – передача видеосигнала и сигналов 4 каналов звукового сопровождения и вещания.

Технические параметры оборудования системы «Радуга-Рапира-М» обеспечивали высокие качественные показатели и надежность работы каналов и трактов РРЛ, оснащенных этим оборудованием.

Таким образом, в России со времен СССР существует широко развитая сеть аналоговых магистральных и внутризоновых радиорелейных линий, что делает экономически целесообразным использование существующих радиорелейных станций для организации цифровых трактов. В настоящее время процесс модернизации аналоговых радиорелейных линий в цифровые называют цифровизацией.

К числу радиорелейных станций (РРС) цифровизация которых возможна, относятся: «Восход-М», «Курс-4», «Курс-6», «Курс-4М», «ГТТ-70/4000», «ГТТ-70/8000», «Ракита-8», «Радуга-4», «Радуга-6», «Радуга-АЦ», «Комплекс» и др. При цифровизации указанных РРС используется оборудование, обычно подключаемое по промежуточной частоте 70 МГц. Кроме того, возможен вариант дополнительной передачи цифрового сигнала Е1 (2048 кбит/с) без нарушения работы аналоговой РРЛ.

В конце прошлого века были разработаны различные варианты цифровых модемов на скорости от 2 до 34 Мбит/с. В результате, было создано семейство цифровых модемов для аналоговых РРЛ на скоростях: 2,048 Мбит/с, 8,448 Мбит/с, 17 Мбит/с и 34,368 Мбит/с.

Для организации передачи различной цифровой информации со скоростями

8,448 Мбит/с, 17 Мбит/с или 34,368 Мбит/с использовались свободные от аналоговой информации стволы. Модемы на эти скорости могут комплектоваться мультиплексной аппаратурой и, таким образом, обеспечивать передачу соответственно 4, 8 или 16 цифровых потоков по 2,048 Мбит/с, что хорошо согласуется с принципами построения синхронной цифровой иерархии (SDH).

Во всех типах цифровых модемов обеспечивался контроль входного и выходного сигналов, обнаружение и генерация сигналов индикации аварийного состояния (СИАС) и контроль коэффициента ошибок без перерыва и с перерывом связи. Было организовано производство всех названных цифровых модемов, и они нашли свое применение на действующей сети РРЛ.

Главная Радиорелейная связь РАДИОРЕЛЕЙНая СВЯЗь

1.1. ПРИНЦИПЫ РАДИОРЕЛЕЙНОЙ СВЯЗИ. КЛАССИФИКАЦИЯ РАДИОРЕЛЕЙНЫХ СИСТЕМ

В самом общем виде радиорелейную линию (РРЛ) связи можно определить как цепочку приемопередающих радиостанций. Приемник каждой станции принимает сигнал, посылаемый передатчиком предыдущей станции, и усилива-ет его. Усиленный сигнал поступает на передатчик данной станции и далее излучается в направлении следующей станции. Построенная таким образом цепочка станций обеспечивает высококачественную и надежную передачу различных сообщений па больщие расстояния.

В зависимости от используемого вида распространения радиоволи РРЛ можно разделить иа два класса: радиорелейные линии прямой видимости, в которых существует прямая видимость между антеннами соседних станций, и тропосферные радиорелейные линии, в которых нет прямой видимости между антеннами соседних станций.

Наиболее распространены РРЛ прямой видимости, которые работают в диапазонах дециметровых и сантиметровых волн. В этих диапазонах возможно построение щирокополосных приемников и передатчиков. Поэтому РРЛ обеспечивают передачу широкополосных сигналов и, в первую очередь, сигналов многоканальной телефонии и телевидения. В диапазонах дециметровых и особенно сантиметровых воли возможно применение остронаправлеиных антенн, так как благодаря малой длине волиы оказывается возможным построение таких антенн приемлемых габаритных размеров. Использование остронаправлеиных антенн, имеющих больщой коэффициент усиления (1000-10 000 и более по мощности) позволяет обходиться небольщимн мощностями передатчиков (от долей ватт до 10-20 Вт) и, следовательно, иметь компактную и экономичную аппаратуру. Для линий этого класса выделены соответствующие полосы частот в диапазонах 2, 4, 6, 8, 11 и 13 ГГц и в более высокочастотных диапазонах.

Необходимость прямой видимости между антеннами соседних станций требует поднятия антенн над уровнем земли и, следовательно, строительства соответствующих антенных опор - бащеи или мачт. Высота подвеса антеии определяется расстоянием между соседними станциями, а также характером рельефа местности между ними. В зависимости от этих факторов высота оцор может доходить до 100 м, а иногда и более. В ряде случаев, при благопринтном рельефе местности, антенны могут располагаться на небольщой высоте, например иа крыще здания, в котором установлена аппаратура.

Расстояние между соседними станциями обычно находится в пределах 40-70 км. В отдельных случаях эти интервалы сокращаются до 20-30 км из-за необходимости подведения линии в конкретно заданный пункт, а также в случае особо неблагоприятного рельефа местности.

По пропускной способности радиорелейные системы прямой видимости разделяются на три основных вида:

Радиорелейные системы больщой емкости. Емкость радиоствола таких систем составляет 600-2700 иногда и более каналов ТЧ или канал передачи сигналов изображения телевидения с одним или несколькими каналами передачи звуковых сигналов телевидения и звукового вещания. Эти системы используются для организации магистральных радиорелейных линий большой протиженности.

Построение радиорелейной линии. Система резервироеания

Радиорелейные системы средней емкости. Емкость радиоствола этих систем составляет 60-600 каналов ТЧ или канал передачи сигналов изображения телевидения с одним или несколькими каналами передачи звуковых сигналов телевидения и звукового вещания. В отдельных случаях системы этого класса не рассчитаны иа передачу сигналов изображения телевидения. Такие системы используются для организации внутризоновых соединительных линий.

Малоканальные радиорелейные системы с числом каналов ТЧ в радиостволе от 6 до 60. Эти системы не рассчитаны на передачу телевизионных сигналов, они используются для организации местных соединительных линий.

Приведенная классификация радиорелейных систем иосит условный характер: она отражает в основном то положение, которое имеет место на стационарных радиорелейных линиях Министерства связи СССР и министерств связи союзных республик. Радиорелейные системы для технологических связей (иа железнодорожном транспорте, газопроводах, линиях электропередач и т. п.) имеют свою специфику и не всегда укладываются в выще приведенную классификацию. То же относится и к радиорелейным телевизионным системам для репортажных целей.

При передаче сигналов многоканальной телефонии в радиорелейных системах больщой и средней емкостей применяется, как правило, аппаратура кабельных систем передачи с частотным разделением каналов.

В малоканальных радиорелейных системах применяется как аппаратура с частотным, так и с временным разделением каналов.

В настоящем Справочнике рассматриваются радиорелейные системы, в которых используются аппаратура кабельных систем передачи с частотным разделением каналов и частотная модуляция радиосигнала.

1.2. ПОСТРОЕНИЕ РАДИОРЕЛЕЙНОЙ ЛИНИИ. СИСТЕМА РЕЗЕРВИРОВАНИЯ

Стои.мость бащеи или,мачт, аитеиио-фидериых сооружений, технических зданий и систем электроснабжения значительно превыщает стоимость приемопередатчиков. Поэтому для повыщення экономической эффективности п пропускной способности радиорелейные системы, как правило, делают многоствольны-

"с. 1.1. Структурная схема станций многоканальной радиорелейной линии

МИ, в которых на каждой станции работают на различных частотах несколько приемо-передатчиков на общую антенно-фндерную систему, используя одну в ту же антенную опору, техническое здание и систему энергоснабжения.

Упрощенная структурная схема многоствольной радиорелейной линии приведена на рис. 1.1. Работа нескольких приемопередатчиков Пм-Пд на общую антенную систему осуществляется с помощью систем СВЧ уплотнения (разделительных фильтров н устройств сложения сигналов приема и передачи).

Для обеспечения высокой надежности работы на РРЛ применяетси резервирование оборудования. Различают две основные системы резервирования: постанциоиную и поучастковую.

Постанционнаи система резервирования (рис. 1.2) предусматривает на каждый рабочий приемопередатчик наличие резервного, имеющего те же ра- бочие частоты. При аварии рабочего приемопередатчика происходит автоматическая замена его резервным. Система, управляющая автоматическим резервированием (СУР), работает самостоятельно на каждой станции..

Недостатки систем: большой объем приемопередающего оборудования (100-процентный резерв); отсутствие какой-либо защиты от замираний сигналов; сложность устройств СВЧ коммутации и большое времи коммутации в случае использования механических переключателей. В современных радиорелейных системах постанционное резервирование не применяется.

При поучастковой системе резервирования каждое направление между двумя узловыми (или узловой и оконечной) станциями свизываются в единую

систему (рис. 1.3). Дли целей ре-

зрвироваипя выделяется отдельный резервный ствол, работающий на своих частотах. Аппаратура резервного ствола постоянно включена. При отсутствии аварии в рабочих стволах резервный ствол не загружен передачей. Для коитроли за качеством работы стволов по ним непрерывно передаются спе-:и:алы1ые пилот-сигналы.

Пплот-сигпал вводится в ствол через модулятор первой станции участка резервирования, а выделя-

Рис. 1.2. Структурная схема постапцпонного ре- ется специальным демОДуЛЯТО-

зсрвироваипя ром ИЗ последней станцип этого

участка. Выделенный пилот-сигнал сравнивается с величиной шума в специальном измерительном канале. Если отношение шума к пилот-сигналу превышает заданную величину или уровень пилот-сигнала падает ниже нормы, то начинается проиесс переключения на резервный ствол. Для этого на станции, находящейся на конце участка, включается генератор обратных аварийных сигналов (ГОАС). Для каждого рабочего ствола имеется отдельный ГОАС, работающий на своей частоте. Обратный аварийный сигнал по специальному каналу в системе служебной связи подается на первую станцию участка резервирования, где он воздействует на переключающее устройство, которое производит подключение резервного ствола параллельно поврежденному. В результате этого сообщение н пилот-сигнал начинают передаваться также и по резервному стволу. Выделенный на выходе резервного ствола (на последней станции участка резервирования) пилот-сигнал преобразуется в сигнал команды, который производит дальнейшее переключение тракта передачи с выхода поврежденного рабочего ствола на выход резервного ствола. Время перерыва связи при поучастковом резервировании определяется параметрами аппаратуры резервирования п характером аварии.

При так называемой «мгновенно")» аварии (например, нарушении контакта или замыкании в приемопередающем тракте какой-либо станции участка резервирования) время перерыва связи слагается из времени пробега обратного

Построеиие радиореяейиой линии. Система резервирования

аварийного сигнала от приемного конца до передающего конца участка, времена пробега полезного сообщения по резервному стволу от передающего конца участка до приемного, времени пробега управляющих сигналов в аппаратуре

Пилош-сигиал

РаЪочий стШ

пилот-Г*1 сигнала. Анализ.

Пшт-сигиал

Радот cmSon

Резервный стВол

сл1/шонШ~ с Вязи

Рис. 1.3. Структурная схема поучасткового резервирования

резервирования и времени срабатывания переключающих устройств. Время перерыва связи при «мгновенной» аварии обычно находится в пределах 10- 40 мс.

При так называемой «медленной» аварии (например, глубоком замирании сигнала), когда параметр, по которому определяется состояние аварии (отношение уровня шума к пилот-сигналу), изменяется со скоростью, не превышающей 100 дБ/с, время перерыва связи определяется только временем, необходимым для срабатывания переключающего устройства на премном конце участка резервированпя. Это время при современном уровне техники может быть сведено к единицам микросекунд.

Достоинство поучастковой системы резервирования - меньший, чем при по-стаиционной системе резервирования, объем приемопередающего оборудования (один резервный ствол на несколько рабочих стволов); малое времи переключения на резерв; определения защита от глубоких замирений сигнала интерференционного характера из-за слабой корреляции глубоких замираний сигнала в стволах, работающих на различных частотах. Эта защита тем эффективнее, чем больше разница между частотами, на которых работают рабочий н резервный стволы. Но эта разница иногда может быть недостаточной, так как для работы радиорелейной системы выделены конкретные полосы частот, выходить за пределы которых недопустимо.

Следует также иметь в виду, что система поучасткового резервирования дает определенную защиту от замираний сигнала только в то время, когда резервный ствол не используется для резервирования вышедшего из строи оборудования рабочего ствола.

Систему поучасткового резервирования радиорелейных систем принято сокращенно обозначать суммой двух цифр, из которых первая обозначает число рабочих стволов, а вторая - число резервных стволов. Так, система 3-1-1 означает радиорелейную систему, имеющую три рабочих ствола и одни резервный ствол.

1.3. ПЛАНЫ РАСПРЕДЕЛЕНИЯ ЧАСТОТ

В РАДИОРЕЛЕЙНЫХ СИСТЕМАХ СВЯЗИ ПРЯМОЙ

ВИДИМОСТИ

Двухчастотная система (рис. 1.4) экономична с точки зрения использования полосы частот, выделенной для радиорелейной связи в данном диапазоне, но требует высоких защитных свойств антенн от приема сигналов с обратного направления. При двух частотной системе используются рупорно-параболиче-ские, высококачественные осесимметричные антенны и другие типы антенн, имеющие защитное действие -60-70 дБ.

Четырехчастотная система (рис. 1.5) допускает использование более простых и дешевых антенных систем. Однако количество дуплексных радиостволов, которое может быть образовано в данной полосе частот при четырехчастотной системе, в 2 раза меньше, чем при двухчастотной системе. Как правило, в современной радиорелейной аппаратуре применяется двухчастотная система. Четырехчастотная система обычно использовалась на РРЛ с перископическими антеннами в диапазоне 2 ГГц.

Частоты приема и передачи в одном радиостволе РРЛ чередуются от станции к станции. Станции, на которых прием осуществляется на более низкой частоте, а передача на более высокой частоте, обозначаются символом «НВ>, а

Передача

Передача

Передача

Рис. 1.4. Двухчастотная система

Рис. 1.5. Четырехчастотная система

Планы распределения частот для многоствольных РРЛ разработаны таким образом, чтобы свести к минимуму интерференционные помехи, возникающие при одновременной работе нескольких приемников и передатчиков на общий антенио-фидериый тракт.

Планы распределеиня частот

Во всех современных радиорелейных системах применяются планы радиочастот, в которых частоты приема размещаются в одной половине отведенной полосы частот, а частоты передачи - в другой половине.

Станция N-

Станция N°3

Рис. 1.6. Схема участка т;)ассы РРЛ

Puc. 1.7. Система с разнесенными частотами приема и передачи

Структурная схема радиорелейной станции, использующей данный принцип приведена на рис. 1.7. Для приема и передачи сигналов используется одна общая антенна. Система разделительных фильтров рассчитана на работу только в половине полосы частот, отведенной для радиорелейной системы. Тракты приема и передачи объединяются в общий тракт с помощью поляризационного фильтра или ферритового циркулятора (УС) (см. рис 17)

План распределения частот радиорелейной системы кУРС-2М в диапазоне Иц приведен на рис. 1.8. Он соответствует Рекомендации 382-2МККР и ооеспечивает оганизацию шести дуплексных стволов по двухчастотной системе зЛ\ дуплексных стволов по четырехчастотной системе). Номинальные по формуле нижней половине диапазона определяются

/» = /, -208 + 29 п,

а в верхней половине диапазона f„ - no формуле /„«/,+ 5+29 п

Особенности применения радиорелейных станций для решения задач абонентского доступа
Среди технических средств, применяемых при построении телекоммуникационных сетей, радиорелейные станции (РРС) занимают особое место. Довольно часто их применение остается единственным средством, обеспечивающим передачу трафика там, где прокладка кабеля невозможна или нецелесообразна по экономическим соображениям. Основными типовыми задачами, решаемыми с помощью этого вида оборудования, являются организация межсайтовых соединений, абонентских выносов, привязка к транспортным магистралям, построение технологических линий связи большой протяженности. В последнее время востребована реализация задач «последней мили», предоставление абонентам услуг голосовой телефонной связи, Internet, кабельного телевидения. В пригородных и сельских районах с недостаточной степенью проникновения современной телекоммуникационной инфраструктуры применение радиорелейных станций решает такую проблему в силу таких характеристик этого оборудования, как быстрота развертывания, относительно быстрая окупаемость, высокая пропускная способность, интеграция в PDH-сети, трансляция необходимых абонентских интерфейсов в составе группового цифрового потока. В зависимости от конкретной ситуации, РРС могут применяться для решения задач «последней мили»:

  • как отдельное самодостаточное звено при наличии в составе оборудования РРС функционально законченных абонентских окончаний;
  • в сочетании с оконечным мультиплексорным оборудованием или оборудованием АТС;
  • в сочетании с другими средствами абонентского радиодоступа.
Достаточно распространена такая схема применения радиорелейной станции в составе интегрированной системы абонентского радиодоступа, когда с помощью РРС обеспечивается вынос необходимого числа цифровых потоков Е1 от проводной транспортной сети на точку доступа, к которой подключается оборудование WLL. Такая схема находит свое применение при телефонизации коттеджных поселков, пригородных районов.

Основными параметрами, определяющими выбор РРС для конкретной ситуации, чаще всего являются:

  • частотный диапазон, поскольку от него зависит длина интервала радиорелейной линии;
  • топология трассы («линия», «звезда», «кольцо» или вариации);
  • информационная емкость станции;
  • набор дополнительных сервисов (реализация дополнительных интерфейсов Ethernet, низкоскоростных цифровых каналов дополнительно к основным цифровым потокам, возможность телеуправления-телесигнализации, программное управление и конфигурация и т.п.);
  • стоимость станции.
Общая архитектура среднескоростных РРС
Архитектура цифровой радиорелейной станции делится на две функциональных части: выносное (IDU), к которому относятся антенное устройство с элементами крепления, кабели, приемопередающие устройства) и внутреннее – ODU (модули доступа, мультиплексоры, источники питания). Приемопередающее устройство (ППУ) соединяется с внутренним оборудованием гибким волноводом - симметричным или коаксиальным кабелем, по которому подаются информационные потоки и электропитание. Длина волновода варьируется от 300м до 1200м, в зависимости от скорости передачи цифрового потока. Конструктивное исполнение приемопередатчиков с синтезаторами частот обеспечивает возможность перестройки частоты в пределах поддиапазона. Зарубежные изготовители применяют функцию автоматической регулировки мощности выходного сигнала в зависимости от уровня приема на удаленном конце, что обеспечивает экономию энергоресурсов и отвечает требованиям электромагнитной совместимости. «Горячий резерв» обеспечивается с помощью применения 2-х приемопередатчиков в работе на одну антенну с переключением ствола в случае аварийной ситуации в ODU. Внутреннее оборудование, применительно к схеме организации связи, может комплектоваться либо собственно модулем доступа для передачи группового сигнала в ППУ, с функциями резервирования, служебной связи, дополнительных сервисных каналов управления внешними устройствами и служебной связью, либо может интегрироваться с блоками дополнительных каналов, мультиплексорами для увеличения информационной емкости радиоканала до 34 Мбит/с (Е3). В этом случае мультиплексоры в обычно образуют дополнительную «боковую дорожку» со скоростью 2,048 Мбит/с. Для контроля за функционированием станций и линий, сбора и передачи сигналов аварии, организации шлейфов, управления станцией, отображения состояния применяется система телеуправления и телесигнализации (ТУ-ТС), Управление параметрами радиорелейной станции и конфигурирование сети обычно производится программными средствами, локально по RS-232 или с помощью удаленного доступа, например, по протоколу SNMP.

Технический обзор решений отечественных и зарубежных изготовителей радиорелейной аппаратуры PDH – иерархии в диапазоне частот 1,4…38 ГГц

В настоящей статье кратко рассмотрены возможности среднескоростных радиорелейных станций отечественных и зарубежных производителей, реализующие интерфейсы от Е1 до Е3.

НПФ «МИКРАН»
В комплектации с терминальными мультиплексорами абонентских интерфейсов среднескоростные радиорелейные станции МИК-РЛ , выпускаемые предприятием НПФ «МИКРАН» , позволяют решать широкий перечень задач по предоставлению пользователям аналоговых и цифровых каналов. МИК-РЛ предназначены для организации связи в 14 частотных диапазонах со скоростями передачи Е1, Е2, Е3. В семейство входят радиорелейные станции со средними и низкими скоростями передачи иерархии PDH (7…40 ГГц), а также малоканальные РРС, работающие в низкочастотных диапазонах (150 / 400 МГц). Приемопередающие устройства (выносное оборудование) для всех частотных диапазонов выполнены по унифицированной структурной схеме с цифровой модуляцией QPSK, 16/64/128QAM. В диапазоне 23…40 ГГц приемопередающее устройство интегрировано с антенной, что облегчает операции монтажа. Стволы могут работать с разной поляризацией. Модули доступа (внутреннее оборудование) обеспечивают функции управления и коммутации основных и дополнительных цифровых каналов, контроля параметров работы МИК-РЛ , служебной связи. Аппаратура первого уровня обладает наиболее полным набором функциональных возможностей, системой ТУ-ТС с программной поддержкой 128 станций. Аппаратура второго уровня имеет локальную систему ТУ-ТС. В МИК-РЛ предусмотрена организация дополнительных цифровых каналов n*64 кбит/с. Часть дополнительных каналов используется для внутрисистемных целей (служебной связи, конференцсвязи с селективным и групповым вызовом, мониторинга и управления), остальные каналы с интерфейсами RS-232/422/485, V.35, телефонные окончания E&M предоставляются пользователям. Низкоскоростные каналы сигнализации обеспечивают подключение внешних устройств пожарно-охранной сигнализации и т.п. В состав РРС также могут входить выпускаемые предприятием отдельный модуль дополнительных каналов nx64 кбит/с, модули доступа с интерфейсами Ethernet +n*Е1 (n=0…4), Ethernet + n*4E1 (n=0…4), мультиплексоры вторичных МЦП-12-хх (Е2) и третичных МЦП-13-хх (Е3) цифровых потоков с функциями передачи интерфейсов Ethernet + n*E1 (n-0…4). Мультиплексоры и источники питания включаются в единую систему управления по интерфейсу CAN.

СЕТЬ+СЕРВИС
РРС ФЛОКС является примером отечественного оборудования, завоевавшего популярность при создании корпоративных технологических систем связи и систем связи общего пользования, как в России, так и в странах СНГ. Базовая модель РРС ФЛОКС в частотном диапазоне 1,427 .. 2,690 МГц была разработана в 1995 году в рамках конверсии и в полном объеме использует все современные достижения микроволновых технологий: цифровые методы передачи данных, эффективное использование частотного ресурса, компактное исполнение. Частично (около 30%) используется импортная элементная база. Серийное производство организовано на заводе Аппаратуры наземной и космической связи (АНИКС) с жестким контролем качества.
В 2003-2004 гг завершены разработки, существенно расширившие использование частотного диапазона: ФЛОКС-4 (3 600 .. 4 200 МГц), ФЛОКС-7 (7 250 .. 7 550 МГц), ФЛОКС-23 (21 200 .. 23 600 МГц). Весь модельный ряд РРС ФЛОКС сохраняет завоевавшие популярность основные преимущества: надежность эксплуатации в любом регионе России и СНГ, работу на максимально возможных для диапазона интервалах, неприхотливое обслуживание, сравнительно невысокую цену. Гибкое конструктивное исполнение позволяет удобно и естественно разместить оборудование на узле связи. Поддерживаются уровни резервирования: 1+0, 1+1, 2+0, n+1.
Выпускается 2 типа аппаратуры ФЛОКС: низко- и среднескоростные уровня PDH поддерживают цифровые каналы емкостью 2-, 8- и 34-Мбит/с и предназначены для организация цифровых телефонных каналов связи на местном и зональном уровне и высокоскоростные уровня SDH поддерживают цифровые каналы емкостью 51- и 155-Мбит/с (STM-0 и STM-1) и предназначены для организации как телефонии, так и систем передачи данных в магистральных мультисервисных сетях связи. Для использования в системах сельской связи разработана и выпускается экономичная интегрированная модель ФЛОКС-лайт емкостью 2-Мбит/с. В настоящее время ведется НИОКР по созданию РРС с модуляцией COFDM, которая эффективно использует отраженный сигнал и позволяет строить радиорелейные линии связи в акватории портов, на шельфе и на отраженных сигналах в условиях отсутствия прямой радиовидимости: в городской застройке, в скалистых ущельях рек, в лесистых сопках и горах.
Все модели РРЛ ФЛОКС обеспечиваются единой системой оперативного контроля, поддерживающей любую топологию сети связи и схему резервирования.
РРС ФЛОКС эксплуатируются практически во всех регионах России, в республиках Казахстан, Таджикистан, Узбекистан. Они реально стабильно работают, например, в условиях низких температур Якутии (до -60?С), высоких температур Ставрополья (до +50?С), резко континентального климата Бурятии и Казахстана (суточный перепад температуры до 20?С), субтропического климата Абхазии и морского климата Архангельска, Владивостока и Петропавловска-Камчатского. РРС ФЛОКС внедрены в системах связи МЧС, МВД и МО России, региональных отделениях ОАО Ростелеком (Читателеком, Электросвязь республики Бурятия, Электросвязь Республики Карелия), предприятиях связи в составе Комитета по рыболовству (Архангельск, Владивосток, Красноярск, Мурманск, Петропавловск-Камчатский), Минтранса (Махачкала, Карелия и Архангельская область), рядом операторов сотовой связи: Саратов-GSM, Чувашия-Мобайл, Астрахань-GSM, СтавТелеСот, в странах СНГ (КРИС-Сервис/Казахстан; СОМОНКОМ/Таджикистан, МО республики Узбекистан). Все пользователи дают высокую оценку работе оборудования.

РАДИАН
ЗАО "Радиан" производит радиорелейные станции диапазонов 4…23 ГГц. Передаются цифровые потоки Е1, Е2 и Е3 и аналоговые телевизионные/радиопрограммы, аналоговая телефония, данные от 9,6 кбит/с до 10 Мбит/с. Модемное оборудование обеспечивает современные методы модуляции OQPSK и 64/128QAM с цифровой фильтрацией и адаптивным эквалайзером.
В зависимости от типа оконечного оборудования обеспечивается ввод/вывод пользовательских сигналов: потоков Е1, Е2, Е3 (оборудование МД-8, МД-34, АСТ-155), сигналы аналогового телевидения (КТВМ-200 и ДТВМ-200) для передачи их через цифровую систему с одним или двумя стереоканалами звукового сопровождения. ТВ-сигнал передается в стандарте MPEG-2 в 3-х или 4-х потоках Е1. Качество ТВ-сигнала поддерживает Российский стандарт цветного ТВ SECAM, а также PAL и соответствует телецентрам 2 группы качества. Оборудование обеспечивает два канала служебной связи, в том числе конференц-связь с адресным вызовом и дополнительные пользовательские каналы передачи данных со скоростями от 9,6 до 115 кбит/с.
В случае комплектования радиорелейной станции гибким мультиплексором MF-20 разработки ЗАО «Радиан» обеспечивается 2-х проводная аналоговая телефонная связь как в режиме «абонентского удлинителя», так и в режиме прямого телефона, 4-х и 6-ти проводные межстанционные соединительные линии, последовательные синхронные и асинхронные каналы передачи данных по стандартам V.35/V.36/RS-422/RS-232/RS-485 со скоростями от 9,6 кбит/с до 10 Мбит/с, сигналов звукового вещания высшего качества со сжатием MUSICAM как по аналоговым интерфейсам так и по цифровому интерфейсу AES/EBU.
Возможно подключение пожарной, охранной и другой аварийной сигнализации от внешних датчиков, при установке дополнительного интерфейсного устройства, подключаемого к оборудованию РРС по стыку RS-485. Оборудование имеет развитую автоматизированную систему управления (АСУ), обеспечивающее управление параметрами станции.

ПКП «БИСТ»
ПКП «БИСТ» более десяти лет производит радиорелейное оборудование различных модификаций с пропускной способностью от 2 до 34 Мбит/с. Предприятие стремится активно внедрять свою продукцию на другие сегменты рынка, в том числе в качестве средства решения проблем «расширенной последней мили».
Исходя из современных тенденций развития субрегиональной цифровой инфраструктуры, были определены основные требования к оборудованию, способному формировать оптимальную транспортную среду для небольших местных сетей доступа, в том числе сетей сельской и технологической связи. Для операторов таких сетей жизненно важной становится проблема минимизации как затрат на внедрение, так и эксплуатационных расходов. Она решается путем использования недорогого оборудования, повышением отказоустойчивости транспортной среды, охватом сети эффективной системой мониторинга.
Концепция РРС для субрегиональных сетей с отечественной спецификой получила поддержку НИИР, и в 2002г.-2003г. ФГУ «Российский фонд технологического развития» было осуществлено финансирование НИОКР «Разработка низкоскоростной радиорелейной станции для сетей с низкоскоростной плотностью абонентов, в том числе сельских». В рамках НИОКР были разработаны на основе единого подхода недорогие РРС как с пропускной способностью до 2 Мбит/с, так и РРС 8 и 34 Мбит/с.
Сетевые мультиплексоры из состава РРС семейства БИСТ нового поколения позволяют оборудованию эффективно работать в сетях различной топологии, в том числе кольцевой с использованием технологии маршрутного резервирования. Оборудование имеет встроенную систему мониторинга, по эффективности не уступающую АСКУ базовых модификаций. Реализованные проекты использования РРС семейства «БИСТ» на участках «расширенной последней мили», как правило, представляют собой 3-4 пролетные РРЛ, объединяющие территориально разнесенные емкости местных ЭАТС, базовых станций DECT, либо позволяющие осуществлять доступ удаленных прямых абонентов (ПА) к информационным полям узловых ЦАТС. Типичными примерами являются линии «Кулебаки-Ломовка-Теплово-Гремячево» (ОАО «Волга Телеком», г. Нижний Новгород) и транспортная сеть, построенная в республике Узбекистан по заказу «K.D.M. Enteprises, LLS».
В обоих случаях РРС использовались в качестве транспортной среды для подключения распределенных абонентских емкостей (в первом случае – проводные ПА подключались к ЦАТС, во втором случае – БС стандарта MPT 1327 к коммутационному центру «Actionet»). Дополнительно, в качестве сопутствующей, с помощью аппаратуры гибкого мультиплексирования решалась задача предоставления арендуемых каналов обмена данными внутри ЛВС сторонним организациям. Для решения подобных задач, в частности, в сетевых мультиплексорах из состава РРС семейства «БИСТ» может быть предусмотрено до 2-х портов Ethernet 10 BaseT и порты V.24 для подключения территориально разнесенных абонентов и участков ЛВС.
В комплекте с соответствующими цифровыми кодеками радиорелейное оборудование производства ПКП «БИСТ» используется для раздачи телевизионного и аудио сигналов абонентам в гг. Саратов, Самара, Казань, Приморском крае, в том числе совместно с сигналами цифровой телефонии.

ALCATEL
Alcatel 9400AWY представляет собой семейство цифровых радиорелейных систем, предназначенных для организации связи в диапазонах 7…38 ГГц с конфигурацией 1+0 или 1+1 и пропускной способностью 4…34 Мбит/с. РРЛ Alcatel 9400AWY принадлежит к классу систем раздельного монтажа, что обеспечивает гибкость в выборе необходимой пропускной способности и частотного диапазона. Многие параметры настраиваются программно и не требуют замены оборудования: перестройка частоты, перестройка модуляции, перестройка пропускной способности. Радиорелейная станция имеет функцию автоматического управления выходной мощностью приемопередатчика во всех диапазонах. Один внешний блок может использоваться для работы на любой частоте внутри четверти частотного диапазона. При этом номенклатура ЗИП сокращается до 4 типов ODU для всего частотного диапазона. Внешний блок 9400AWY при необходимости может быть быстро перестроен для работы на другой частоте. Внутренний блок оснащен сменными модулями интерфейсов. Благодаря этому РРЛ 9400AWY находит свое применение не только в сетях передачи голоса (до 16 портов E1 или 1 порт E3 на 1 IDU), но и в сетях передачи данных и в мультисервисных сетях, для чего предусмотрен комбинированный модуль 2х10BaseT+8xE1. В последнем случае пользователь системы имеет возможность перераспределять пропускную способность для пакетного и голосового трафика. Наличие сменных интерфейсных модулей реализует концепцию «платы по мере роста», когда соответствующий интерфейс может быть добавлен к системе по мере необходимости. Другим примером реализации той же концепции в оборудовании Alcatel 9400AWY является наличие программных ключей. Информация на программном ключе определяет набор функций, доступных пользователю. Для добавления новых интерфейсов или увеличения доступной пропускной способности, достаточно поставить новый программный ключ или добавить соответствующий модуль.
В РРЛ Alcatel 9400AWY используются современные функции мониторинга и управления, оптимизированные для эксплуатации и технического обслуживания. Это позволяют создавать масштабируемые решения как для местного управления одним каналом (для сетей размерами от 128 элементов радиооборудования), так и глобальные решения для сложных транспортных сетей (на основе централизованной сетевой системы управления Alcatel 1353NM), обеспечивающие выявление неисправностей, измерение рабочих параметров, конфигурирование и управление защитой.

ERICSSON
Микроволновые системы Ericsson средней пропускной способности для связи "точка-точка" MINI-LINK E пригодны для сетей любого типа. MINI-LINK Е может иметь конфигурацию, удовлетворяющую требованиям любых сетей по дальности и скорости передачи данных. Эта аппаратура работает в частотных диапазонах 7…38 ГГц и имеет скорость передачи данных от 2 до 2х17 Мбит/с. Терминалы MINI-LINK Е могут использоваться в сетях любой конфигурации - в виде звезды, дерева, или кольца. Для повышения надежности могут быть использованы резервируемые системы типа 1+1 или сети с кольцевой структурой. Продукция MINI-LINK E подразделяется на две ветви для лучшего удовлетворения требований по экономичности сетей с высокой плотностью: автономная, полностью наружная аппаратура MINI-LINK E для обеспечения минимальной стоимости сайта и гибкая сплит-система MINI-LINK E для оптимальной компоновки многотерминальных сайтов. Выпускаются конфигурации, поддерживающие до четырех радиомодулей. Программное управление скоростью трафика облегчает возможность расширения сети без замены аппаратуры. Программное управление конфигурацией сайта и взаимными связями позволяет минимизировать количество кабельных соединений, обеспечить высокую надежность и сократить время установки. Полностью наружная аппаратура MINI-LINK E Micro содержит все необходимые компоненты передачи, что устраняет необходимость централизованной инфраструктуре внутри помещения. Это особенно важно, когда необходимы особенно важны быстрый ввод в строй и минимальная стоимость сайта.
Блок интерфейсов Ethernet (ETU) обеспечивает беспроводную связь между сетями LAN по пролетам MINI-LINK E. ETU имеет один интерфейс для подключения LAN. Он может быть гибко сконфигурирован для любой пропускной способности, удовлетворяющей нормативами G.703, 2, 8 или 34 Мбит/с.
Блоки кросс-коннекторов MINI-LINK (MXU) поддерживает резервирующие переключения в сетях кольцевой конфигурации, уплотнение данных на уровне 64 кбит/с и встроенное управление. Они полностью совместимы с обширным семейством аппаратуры Ericsson DXX.
Для централизованного управления и эксплуатации всего оборудования MINI-LINK используется система MINI-LINK Netman. Она может использоваться, как изолированная система или быть интегрирована в Систему Управления Сетью (NMS) более высокого порядка с помощью стандартизованного SNMP интерфейса.

NEC
Корпорация NEC поставляет на российский рынок радиорелейные станции семейства Pasolink для диапазона частот от 4 до 38 ГГц. Системы связи, построенные на этом оборудовании, отличает высокая надежность (наработка на отказ - до 400000 часов), легкость и простота развертывания и технического обслуживания. Оборудование конструктивно состоит из компактного наружного радиочастотного блока (ODU, вес около 3 кг) и каналообразующего внутреннего блока модулятора-демодулятора (IDU, размер 1U), соединенных одним коаксиальным кабелем. Модульное исполнение предусматривает простой переход от схемы резервирования 1+0 к 1+1 или 2+0 и позволяет экономично наращивать пропускную способность. Использование автоматической регулировки мощности передатчика снижает уровень помех, уменьшает коэффициент остаточных ошибок и, в сочетании с трансверсальным адаптивным эквалайзером, облегчает решение проблемы замираний. Применение режима ортогональной поляризации позволяет удваивать пропускную способность системы на одном интервале РРЛ, а современного кодирования Рида–Соломона улучшает характеристики BER (вероятность ошибок на бит информации). Программируемая схема модуляции: PSK/QPSK/16-QAM в системах PHD и 16-QAM/128-QAM в системах SHD, позволяет достичь высокой эффективности использования спектра частот или коэффициента усиления системы. Обеспечивается гибкая комбинация интерфейсов Ethernet и E1. Все оборудование семейства Pasolink+ работает с единой централизованной системой управления PNMS (PASOLINK Network Management System), в операционной среде Windows’NT или Unix, поддерживает до 100 РРС станций в одной сети и использует протокол сетевого управления SNMP. Оборудование Pasolink сертифицировано в России. Проводится полный цикл тестовых испытаний при ±50°С, включая «холодный старт». Модельный ряд уровня PDH включает РРС Pasolink c интерфейсом Ethernet для систем связи или передачи данных с малой и средней пропускной способностью (до 16хЕ1 или 2х10/100Base-TX) и РРС Pasolink Mx с повышенной пропускной способностью от 5xE1 до 40xE1. Программируемая схема модуляции QPSK/16-QAM дает увеличение емкости от 16хE1 до 40хE1 в той же полосе (28 МГц). Ориентирована для использования на сетях операторов мобильной связи, на корпоративных сетях IP, а также в сетях интернет-провайдеров.
Наиболее известное внедрение в России – в составе транссибирской магистральной РРЛ «Москва-Хабаровск» протяженностью 8300 км. На оборудовании Pasolink построены опорные сети связи ведущих отечественных сотовых компаний: Вымпелком, МЕГАФОН и МТС.

NERA
Семейство CompactLink представляет собой экономичную цифровую радиорелейную систему "от точки к точке" с высокими техническими характеристиками, разработанную для систем связи с короткими пролетами. Диапазон частот составляет от 7 до 23 ГГц при пропускной способности как ANSI, так и ETSI от 4-16 DS1/E1. Суммарная скорость передачи составляет 9,2 Мбит/с для 4хЕ1, 18,4 Мбит/с для 8хЕ1, 36,9 Мбит/с для 16хЕ1, 39 Мбит/с для Е3+Е1. CompactLink обеспечивает резервирование стволов 1+0 либо 1+1 с аппаратурным резервом (Hot-Standby). Система обеспечивает автоматическую регулировку мощности передатчика с диапазоном 20 dB. Интерфейс пользователя и цифровая электроника размещаются во внутреннем модуле высотой 1U в стойке 19" . Он выполняет все функции цифровой обработки и контроля системы и не требует регулировки или настройки во время, и после установки. Персональный компьютер используется в качестве интерфейса для контроля и управления, интерфейсы SNMP-Ethernet, SNMP-PPP, CIT. Для систем с горячим резервом требуется два кабеля. Конфигурация с горячим резервом (1+1) имеет два внешних модуля, подключенных к смонтированной на раме системе объединения и разделения стволов. Входные/выходные порты компонентных сигналов – это стандартные симметричные порты 120 Ом для ETSI и 100 Ом для ANSI. CompactLink имеет опционную панель линейного интерфейса, которая обеспечивает индивидуальное подключение 4-16 каналов E1 с несимметричным интерфейсом 75 Ом и разъемом BNC. Блоки интерфейса смонтированы на панели шириной 19" и высотой 2U. Реализованы 2 служебных канала до 9,6 кбит/с (RS-422, RS-485).

NOKIA
FlexiHopper производства фирмы Nokia перекрывает диапазон 7… 38 ГГц, поддерживает одним внутренним блоком до 3-х направлений передачи (один из «пролётов» можно зарезервировать).
Внутренний блок FIU19(Е) предоставляет стандартные телекоммуникационные интерфейсы с помощью трёх устанавливаемых plug-in модулей. Доступные интерфейсы: 12 E1; для обеспечения ёмкости 16 Е1 используется дополнительный расширительный блок EXU; 2 интерфейса Ethernet 10/100Base-T; 2 дополнительных Flexbus-интерфейса для связи с внешними блоками и внутренних блоков между собой; дополнительные (AUX) интерфейсы EIA-232 или V.11 со скоростью 4,8 или 9,6 кбит/c; интерфейс V.11 со скоростью от 9,6…64 кбит/с или интерфейс G.703 кбит/с). Скорость дополнительных цифровых каналов зависит от загрузки трафика каналами Е1. Так, например, при 2-х используемых каналах Е1 возможно передать «медленный» интерфейс V.11 со скоростью 4,8 кбит/c + «быстрый» интерфейс G.703 со скоростью 64 кбит/с, а при загрузке всех возможных 16 Е1 - EIA-232 со скоростью 9,600 бит/c + V.11 cо скоростью 64 кбит/с. Для подключения внешних устройств применяются 4 программируемых TTL-канала ввода/вывода и/или 4 контроллера реле. Вся радиочасть сконцентрирована в наружном радио-модуле (21 х 23 х (12 - 21) см3 / 4,0 – 6 кг).
Радиорелейная станция оснащается интегрированной низкопрофильной параболической или квадратной антенной диаметром 20, 30, 60, 90, 120, или 180см, а так же 240 и 300 см. Применяется горячее резервирование, частотное, пространственное и поляризационное разнесение. Поляризация может меняться поворотом облучателей, которые интегрированы в антенный блок. Возможно использование антенн с двойной поляризацией.
Для повышения качества сигнала в радиорелейном оборудовании Nokia FlexiHopper используются функции прямого исправления ошибок (FEC, кодирование Рида-Саломона) и двух- или четырехглубинный интерливинг. Метод автоматического управления мощностью передачи ALCQ позволяет повышать и снижать мощность излучения автоматически в соответствии с ответом, полученным от другого конца участка радиорелейной линии. В оборудовании реализовано автоматическое измерение предельных показателей замирания, а качество передачи контролируется с помощью встроенной функции измерения коэффициента битовых ошибок (BER) (G.826 МСЭ-Т).
Примерами эффективной работы оборудования FlexiHopper могут служить реализованные московской компанией «РК-Телеком» схемы связи базовых станций стандарта GSM для ОАО «МСС-Поволжье», ЗАО «Пенза-GSM» и других операторов связи. В настоящее время ведется работа по организации пропуска трафика Ethernet в интересах корпоративных заказчиков.

Особенности технических решений РРС для работы в частотном диапазоне 150/ 400 МГц
Для решения задач абонентского доступа в малонаселенных, удаленных и труднодоступных районах применяются малоканальные радиорелейные станции метрового и дециметрового диапазонов. Они предназначены для организации местной связи на большие расстояния, в том числе и на полузакрытых трассах. Хотя скорость цифрового сигнала в радиоканалах, образованных такими РРС, невелика (до 2,048 Мбит/с), в районах с низкой плотностью населения пропускная способность не играет ключевой роли. Гораздо важнее длина интервала радиорелейной линии, а она ввиду физических свойств радиоволн этого участка спектра, может достигать 70 км.

НПФ «МИКРАН»
Радиорелейные станции для этих приложений, выпускаемые предприятием НПФ «МИКРАН» , выполнены в диапазонах частот 150 МГц (МИК-РЛ 150М) и 400 МГц (МИК-РЛ 400М). Эта платформа реализует принцип: подключение линии радиосвязи на любом уровне – от цифровой магистрали до сельского абонента. В аппаратуре МИК-РЛ 150М функции терминала абонентского доступа и модема радиорелейной станции реализованы в модуле доступа МД1-2-В256. Модуль предоставляет абонентам 4-х или 2-х проводные телефонные окончания, а также каналы данных с интерфейсами RS-232, RS-422, RS-485, V.35. Передача группового потока осуществляется на скорости 256 кбит/с. В аппаратуре МИК-РЛ 400М применяется модуль доступа МД1-1-В2. Выделение канальных интервалов из группового потока 2,048 Мбит/с осуществляется с помощью первичных мультиплексоров. Дополнительно к основным цифровым потокам реализуются низкоскоростные цифровые каналы, позволяющие включать системы телеметрии и прочие периферийные устройства. Аппаратура МИК-РЛ 150М / 400М имеет возможность управления параметрами станций с помощью системы ТУ-ТС. Возможно построение территориально-распределенных сетей интегрированного доступа при общем количестве станций до 64. Конфигурирование и управление сетью обеспечивается программно.

НПФ СЕЛЬСОФТ
В частотном диапазоне 150 /400 МГц НПФ «Сельсофт» выпускаются радиорелейные станции Р-150 (f = 150 МГц, 512 кбит/с) и Р6 (f = 400 МГц, 512…2048 Мбит/с). Они состоят из радиоблока в корпусе 19” и антенны типа «волновой канал». Кнопки, расположенные на передней панели, позволяют устанавливать необходимую (или максимально возможную по условиям радиовидимости) групповую скорость передачи в радиоканале с шагом 64 кбит/с. Выбор количества передаваемых каналов (тайм-слотов) из потока Е1 осуществляется программно. Маломощная версия Р6-мини предназначена для организации радиоканала на небольшие расстояния - до 20 км (P= 1Вт). Для объединения аналоговых и цифровых абонентских окончаний в поток Е1, поступающих в радиоблок, используются выпускаемые НПФ «Сельсофт» мультиплексоры. Например, с помощью терминального оборудования МЦ-115Т происходит вставка/выделение в точке доступа и предоставление пользователям Ethernet до 2,048 Мбит/с, до 27 абонентских телефонных каналов, а также передачу данных (RS-232), что обеспечивает доступ к ТфОП, а также коллективный или абонентский доступ к Интернет-ресурсам. Длина радиотрассы при трехпролетном варианте построения РРЛ достигает 150 км.

Заключение
На сегодняшний день рынок радиорелейного оборудования динамично развивается, о чем свидетельствует увеличивающийся спрос на РРС. Этому способствуют такие факторы, как необходимость обеспечения связью месторождений находящейся на подъеме нефтегазовой отрасли, возросшая потребность населения к получению интегрированного доступа к голосовой связи и Интернет, предоставление универсальной услуги связи в новых жилых массивах. Возможность передачи речи, данных, видео, построения сетей различной топологии, быстрота развертывания линий, приемлемая стоимость делают цифровые радиорелейные станции привлекательными по доведению цифровых услуг до абонентов в различных регионах Российской Федерации и стран ближнего зарубежья.

Автор выражает благодарность за предоставление информации по продуктам: «МИК-РЛ » - С. Волк (НПФ «МИКРАН»), «Флокс» – Л. Брусиловскому (Сеть+Сервис), «Радиан» – М. Махк (Радиан), «БИСТ» – Т.Гогоберидзе (ПКП БИСТ), «Р-150» и «Р6»- С. Стригину (НПФ Сельсофт), «Alcatel 9400AWY» - Г. Муратову (Alcatel) , «Ericsson MiniLink» – А. Изюмову (Ланит), «NEC Pasolink»– А.Овсянникову (Сеть+Сервис), «NERA CompactLink» – Д. Мермельштейн (NERA), «Nokia FlexiHopper» – А. Кузнецову (РК-Телеком).

Радиореле́йная свя́зь - один из видов наземной радиосвязи , основанный на многократной ретрансляции радиосигналов . Радиорелейная связь осуществляется, как правило, между стационарными объектами.

Исторически радиорелейная связь между станциями осуществлялась с использованием цепочки ретрансляционных станций, которые могли быть как активными, так и пассивными.

Отличительной особенностью радиорелейной связи от всех других видов наземной радиосвязи является использование узконаправленных антенн , а также дециметровых , сантиметровых или миллиметровых радиоволн.

История

История радиорелейной связи берет начало в январе 1898 года с публикации пражского инженера Йоганна Маттауша (Johann Mattausch) в австрийском журнале Zeitschrift für Electrotechnik (v. 16, S. 35 - 36) Однако его идея использования «транслятора» (Translator), по аналогии с трансляторами проводной телеграфии, была довольно примитивной и не могла быть реализована.

Первую реально работающую систему радиорелейной связи изобрел в 1899 году 19-летний бельгийский студент итальянского происхождения Эмиль Гуарини (Гварини) Форесио (Émile Guarini Foresio) . 27 мая 1899 г. по старому стилю, Эмиль Гуарини-Форесио подал заявку на патент на изобретение №142911 в Бельгийское патентное ведомство, впервые описав в ней устройство радиорелейного ретранслятора (répétiteur) . Этот исторический факт является самым ранним документальным свидетельством приоритета Э. Гуарини-Форесио, что позволяет считать указанную дату официальным днем рождения радиорелейной связи. В августе и осенью того же 1899 г. аналогичные заявки были представлены Э. Гуарини-Форесио в Австрии, Великобритании, Дании, Швейцарии .

Особенностью изобретения Гуарини-Форесио явилась комбинация приёмного и передающего устройств в одном ретрансляторе, осуществлявшем приём сигналов, их демодуляцию в когерере и последующее использование для управления реле, обеспечивавшем формирование обновлённых сигналов, которые затем переизлучались через антенну. Для обеспечения электромагнитной совместимости приёмный сегмент ретранслятора окружен защитным экраном, призванным оградить цепи приёма от мощного излучения передатчика.

В 1931 году Андре Клавир, работая во французском исследовательском подразделении LCT компании ITT , показал возможность организации радиосвязи с помощью ультракоротких радиоволн. В ходе предварительных испытаний 31 марта 1931 года Клавир с помощью экспериментальной радиорелейной линии, работающей на частоте 1,67 ГГц, успешно передал и принял телефонные и телеграфные сообщения, разместив две параболические антенны диаметром 3 м на двух противоположных берегах пролива Ла-Манш . Примечательно, что места установки антенн практически совпадали с местами взлёта и посадки исторического перелета через Ла-Манш Луи Блерио . Следствием успешного эксперимента Андре Клавира стала дальнейшая разработка коммерческого радиорелейного оборудования. Первое коммерческое радиорелейное оборудование было выпущено ITT, а точнее её дочерней компанией STC, в 1934 году и использовало амплитудную модуляцию несущего колебания мощностью в 0,5 Ватт на частоте 1,724 и 1,764 ГГц, полученного с помощью клистрона .

Запуск первой коммерческой радиорелейной линии состоялся 26 января 1934 года. Линия имела протяжённость 56 км над проливом Ла-Манш и соединяла аэропорты Лимпн в Англии и Сент-Энглевер во Франции. Построенная радиорелейная линия позволяла одновременно передавать один телефонный и один телеграфный канал и использовалась для координации воздушного сообщения между Лондоном и Парижем. В 1940 году в ходе Второй Мировой Войны линия была демонтирована.

Радиорелейная связь прямой видимости

Как правило под радиорелейной связью понимают именно радиорелейную связь прямой видимости.

При построении радиорелейных линий связи антенны соседних радиорелейных станций располагаются в пределах прямой видимости . Требование наличия прямой видимости обусловлено возникновением дифракционных замираний при полном или частичном закрытии трассы распространения радиоволн. Потери при дифракционных замираниях могут вызывать сильное ослабление сигнала, таким образом радиосвязь между соседними радиорелейными станциями станет невозможна. Поэтому для устойчивой радиосвязи антенны соседних радиорелейных станций как правило располагают на естественных возвышенностях или специальных телекоммуникационных башнях или мачтах таким образом, чтобы трасса распространения радиоволн не имела препятствий.

С учётом ограничения на необходимость наличия прямой видимости между соседними станциями дальность радиорелейной связи ограничена как правило 40 - 50 км.

Тропосферная радиорелейная связь

При построении тропосферных радиорелейных линий связи используется эффект отражения дециметровых и сантиметровых радиоволн от турбулентных и слоистых неоднородностей в нижних слоях атмосферы - тропосфере .

Использование эффекта дальнего тропосферного распространения радиоволн УКВ диапазона позволяет организовать связь на расстояние до 300 км при отсутствии прямой видимости между радиорелейными станциями. Дальность связи может быть увеличена до 450 км при расположении радиорелейных станций на естественных возвышенностях.

Для тропосферной радиорелейной связи характерно значительное ослабление сигнала. Ослабление возникает как при распространении сигнала через атмосферу, так и вследствие рассеяния части сигнала при отражении от тропосферы. Поэтому для устойчивой радиосвязи как правило используют передатчики мощностью до 10 кВт, антенны с большой апертурой (до 30 x 30 м), а значит, и большим коэффициентом усиления, а также высокочувствительные приёмники с малошумящими элементами.

Также для тропосферных радиорелейных линий связи характерно постоянное наличие быстрых, медленных и селективных замираний радиосигнала. Уменьшение влияния быстрых замираний на принимаемый сигнал достигается использованием разнесенного частотного и пространственного приёма. Поэтому на большинстве стационарных тропосферных радиорелейных станций расположено несколько приёмных антенн.

Примером наиболее известных и протяжённых тропосферных радиорелейных линий связи являются:

  • ТРРЛ «Север» , «ACE High», «White Alice», «JASDF», линия «Дью» , линии «NARS»;
  • ТСУС «Барс»

Радиорелейные ретрансляторы

В отличие от радиорелейных станций ретрансляторы не добавляют в радиосигнал дополнительной информации. Ретрансляторы могут быть как пассивными, так и активными.

Пассивные ретрансляторы представляют собой простой отражатель радиосигнала без какого-нибудь приёмопередающего оборудования и, в отличие от активных ретрансляторов, не могут усиливать полезный сигнал или переносить его на другую частоту. Пассивные радиорелейные ретрансляторы применяются в случае отсутствия прямой видимости между радиорелейными станциями; активные - для увеличения дальности связи.

В качестве пассивного ретранслятора могут выступать как плоские отражатели, так и антенны радиорелейной связи, соединённые коаксиальными или волноводными вставками (так называемые антенны, соединённые «спина к спине»).

Плоские отражатели как правило используются при небольших углах отражения и обладают эффективностью близкой к 100 %. Однако с увеличением угла отражения эффективность плоского отражателя уменьшается. Достоинством плоских отражателей является возможность использования для ретрансляции нескольких частотных диапазонов радиорелейной связи.

Антенны, соединённые «спина к спине» как правило используются при углах отражения близких к 180° и обладают эффективностью 50-60 %. Подобные отражатели не могут использоваться для ретрансляции нескольких частотных диапазонов из-за ограниченных возможностей самих антенн.

Smart-ретрансляторы

Среди новых направлений в развитии радиорелейной связи, наметившихся в последнее время, заслуживает внимания создание интеллектуальных ретрансляторов (smart relay) Их появление связано с особенностью реализации технологии MIMO , при которой необходимо знать передаточные характеристики радиорелейных каналов. В smart-ретрансляторе осуществляется так называемая "интеллектуальная" обработка сигналов. В отличие от традиционного набора операций "приём – усиление – переизлучение" в простейшем случае она предусматривает дополнительную коррекцию амплитуд и фаз сигналов с учётом характеристик передачи пространственных MIMO -каналов на том или ином интервале радиорелейной линии . В этом случае делается допущение, что все каналы MIMO имеют одинаковые коэффициенты передачи. Оно вполне может быть оправдано с учётом узких лучей диаграмм направленности приёмной и передающей антенн на дальностях связи, при которых расширение диаграмм направленности не приводит к заметному проявлению эффекта многолучевого распространения радиоволн.

Более сложный вариант реализации принципа smart relay предполагает полную демодуляцию принятых сигналов в ретрансляторе с извлечением передаваемой в них информации, её запоминанием и последующим использованием для модуляции переизлучаемых сигналов с учётом характеристик состояния канала MIMO в направлении на следующий ретранслятор сети . Такая обработка, хотя и является более сложной, позволяет максимально учесть искажения, вносимые в полезные сигналы по трассе их распространения.

Частотные диапазоны

Для организации радиосвязи используются деци- , санти- и миллиметровые волны .

Для обеспечения дуплексной связи каждый частотный диапазон условно разделяется на две части относительно центральной частоты диапазона. В каждой части диапазона выделяются частотные каналы заданной полосы. Частотным каналам «нижней» части диапазона соответствуют определённые каналы «верхней» части диапазона, причём таким образом, что разница между центральными частотами каналов из «нижней» и «верхней» частей диапазона была всегда одна и та же для любых частотных каналов одного частотного диапазона.

Диапазон (ГГц) Границы диапазона (ГГц) Ширина каналов (МГц) Рекомнендации ITU-R Решения ГКРЧ
0,4 0,4061 - 0,430
0,41305 - 0,450
0,05, 0,1, 0,15, 0,2, 0,25, 0,6
0,25, 0,3, 0,5, 0,6, 0,75, 1, 1,75, 3,5
ITU-R F.1567
1,4 1,350 - 1,530 0,25, 0,5, 1, 2, 3,5 ITU-R F.1242
2 1,427 - 2,690 0,5 ITU-R F.701
1,700 - 2,100
1,900 - 2,300
29 ITU-R F.382
1,900 - 2,300 2,5, 3,5, 10, 14 ITU-R F.1098
2,300 - 2,500 1, 2, 4, 14, 28 ITU-R F.746
2,290 - 2,670 0,25, 0,5, 1, 1,75, 2, 2,5 3,5, 7, 14 ITU-R F.1243
3,6 3,400 - 3,800 0,25, 25 ITU-R F.1488
4 3,800 - 4,200
3,700 - 4,200
29
28
ITU-R F.382 Решение ГКРЧ № 09-08-05-1
3,600 - 4,200 10, 30, 40, 60, 80, 90 ITU-R F.635
U4 4,400 - 5,000
4,540 - 4,900
10, 28, 40, 60, 80
20, 40
ITU-R F.1099 Решение ГКРЧ № 09-08-05-2
L6 5,925 - 6,425
5,850 - 6,425
5,925 - 6,425
29,65
90
5, 10, 20, 28, 40, 60
ITU-R F.383 Решение ГКРЧ № 10-07-02
U6 6,425 - 7,110 3,5, 5, 7, 10, 14, 20, 30, 40, 80 ITU-R F.384 Решение ГКРЧ № 12-15-05-2
7 ITU-R F.385
8 ITU-R F.386
10 10,000 - 10,680
10,150 - 10,650
1,25, 3,5, 7, 14, 28
3,5, 7, 14, 28
ITU-R F.747
10,150 - 10,650 28, 30 ITU-R F.1568
10,500 - 10,680
10,550 - 10,680
3,5, 7
1,25, 2,5, 5
ITU-R F.747
11 10,700 - 11,700 5, 7, 10, 14, 20, 28, 40, 60, 80 ITU-R F.387 Решение ГКРЧ № 5/1,

Решение ГКРЧ 09-03-04-1 от 28.04.2009

12 11,700 - 12,500
12,200 - 12,700
19,18
20
ITU-R F.746
13 12,750 - 13,250 3,5, 7, 14, 28 ITU-R F.497 Решение ГКРЧ 09-02-08 от 19.03.2009
12,700 - 13,250 12,5, 25 ITU-R F.746
14 14,250 - 14,500 3,5, 7, 14, 28 ITU-R F.746
15 14,400 - 15,350
14,500 - 15,350
3,5, 7, 14, 28, 56
2,5, 5, 10, 20, 30, 40, 50
ITU-R F.636 Решение ГКРЧ № 08-23-09-001
18 17,700 - 19,700
17,700 - 19,700
17,700 - 19,700
18,580 - 19,160
7,5, 13,75, 27,5, 55, 110, 220
1,75, 3,5, 7
2,5, 5, 10, 20, 30, 40, 50
60
ITU-R F.595 Решение ГКРЧ № 07-21-02-001
23 21,200 - 23,600
22,000 - 23,600
2,5, 3,5 - 112
3,5 - 112
ITU-R F.637 Решение ГКРЧ № 06-16-04-001
27 24,250 - 25,250
25,250 - 27,500
25,270 - 26,980
24,500 - 26,500
27,500 - 29,500
2,5, 3,5, 40
2,5, 3,5
60
3,5 - 112
2,5, 3,5 - 112
ITU-R F.748 Решение ГКРЧ № 09-03-04-2
31 31.000 - 31,300 3,5, 7, 14, 25, 28, 50 ITU-R F.746
32 31,800 - 33,400 3,5, 7, 14, 28, 56, 112 ITU-R F.1520
38 36,000 - 40,500
36,000 - 37,000
37,000 - 39,500
38,600 - 39,480
38,600 - 40,000
39,500 - 40,500
2,5, 3,5
3,5 - 112
3,5, 7, 14, 28, 56, 112
60
50
3,5 - 112
ITU-R F.749 Решение ГКРЧ № 06-14-02-001
42 40,500 - 43,500 7, 14, 28, 56, 112 ITU-R F.2005 Решение ГКРЧ № 08-23-04-001
52 51,400 - 52,600 3,5, 7, 14, 28, 56 ITU-R F.1496
57 55,7800 - 57,000
57,000 - 59,000
3,5, 7, 14, 28, 56
50, 100
ITU-R F.1497 Решение ГКРЧ № 06-13-04-001
70/80 71,000 - 76,000 / 81,000 - 86,000 125, N x 250 ITU-R F.2006 Решение ГКРЧ № 10-07-04-1
94 92,000 - 94,000 / 94,100 - 95,000 50, 100, N x 100 ITU-R F.2004 Решение ГКРЧ № 10-07-04-2

Частотные диапазоны от 2 ГГц до 38 ГГц относятся к «классическим» радиорелейным частотным диапазонам. Законы распространения и ослабления радиоволн, а также механизмы появления многолучевого распространения в данных диапазонах хорошо изучены и накоплена большая статистика использования радиорелейных линий связи. Для одного частотного канала «классического» радиорелейного частотного диапазон выделяется полоса частот не более 28 МГц или 56 МГц.

Диапазоны от 38 ГГц до 92 ГГц для радиорелейной связи стали выделяться недавно и являются более новыми. Несмотря на это данные диапазоны считаются перспективными с точки зрения увеличения пропускной способности радиорелейных линий связи, так как в данных диапазонах возможно выделение более широких частотных каналов.

Модуляция и помехоустойчивое кодирование

Одними из особенностей использования радиорелейных линий связи является:

  • необходимость передачи больших объёмов информации в сравнительно узкой полосе частот,
  • ограниченная мощность сигнала, накладываемые на радиорелейные станции.

Методы резервирования

С целью уменьшения неготовности интервалов РРЛ применяют различные методы резервирования. Обычно конфигурации с резервированием обозначают в виде суммы "N+M", где N обозначает общее количество стволов РРЛ, а M - количество зарезервированных стволов РРЛ. Иногда после суммы добавляют аббревиатуру HSB (Hot StandBy, "горячий" резерв), SD (Space Diversity, пространственный разнесённый приём) ил FD (Frequency Diversity, частотный разнесённый приём), обозначающую метод резервирования стволов РРЛ.

Методы резервирования радиорелейной связи можно разделить

«Горячий» резерв

Конфигурация оборудования РРЛ с N стволами и M резервным стволом, находящимся в "горячем" резерве. Резервирование достигается путём дублирования всех (части) функциональных блоков РРЛ. В случае выхода одного из блоков РРЛ из строя, блоки, находящиеся в "горячем" резерве замещают неработоспособные блоки.

Частотный разнесённый приём

Метод частотного разнесенного приёма направлен на устранение частотно-селективых замираний в канале связи.

Пространственный разнесённый приём

Метод пространственного разнесения применяется для устранения замираний, возникающих вследствие многолучевого распространения радиоволн в канале связи. Метод пространственного разнесения чаще всего используется при строительстве радиорелейных линий связи, проходящими над поверхностями с коэффициентом отражения близким к 1 (водная поверхность, болота, сельскохозяйственные поля).

Поляризационный разнесённый приём

Одним из недостатков поляризационного разнесённого приёма является необходимость использования более дорогостоящих двухполяризационных антенн.

Кольцевые топологии

Наиболее надёжным методом резервирования является построения радиорелейных линий связи по кольцевой топологии.

Применение радиорелейной связи

Из всех видов радиосвязи радиорелейная связь обеспечивает наибольшее отношение сигнал/шум на входе приёмника при заданной вероятности ошибки. Именно поэтому при необходимости организации надёжной радиосвязи между двумя объектами чаще всего используются радиорелейные линии связи.

Магистральные радиорелейные линии связи

Исторически радиорелейные линии связи использовались для организации каналов связи телевизионного и радиовещания, а также для связи телеграфных и телефонных станций на территории со слабо развитой инфраструктурой.

Сети связи нефтепроводов и газопроводов

Радиорелейные линии связи применяются при строительстве и обслуживании нефте- и газопроводов в качестве основных или резервных оптическому кабелю линий связи для передачи телеметрической информации.

Сотовые сети связи

Радиорелейная связь находит применение в организации каналов связи между различными элементами сотовой сети, особенно в местах со слабо развитой инфраструктурой.

Современные радиорелейные линии связи способны обеспечить передачу больших объёмов информации от базовых станций 2G, 3G и 4G к основным элементам опорной сети сотовой связи.

Недостатки радиорелейной связи

  • Ослабление сигнала в свободном пространстве
  • Ослабление сигнала в дожде и тумане На частотах до 12 ГГц осадки в виде дождя или снега слабо влияют на работу радиорелейных линий связи.
  • Литература
    • Mattausch J. Telegraphie ohne Draht. Eine Studie. // Zeitschrift für Elektrotechnik. Organ des Elektrotechnischen Vereines in Wien.- Heft 3, 16. Jänner 1898. - XVI. Jahrgang. - S. 35-36..
    • Слюсар В.И. Радиорелейным системам связи 115 лет. // Первая миля. Last mile (Приложение к журналу "Электроника: наука, технология, бизнес"). – 2015. - № 3.. - С. 108 - 111 .
    • Slyusar V.I. First Antennas for Relay Stations.// International Conference on Antenna Theory and Techniques, 21-24 April, 2015, Kharkiv, Ukraine. - Pp. 254 - 255. .
    • Harry R. Anderson Fixed Braadband Wireless System Design - John Wiley & Sons, Inc., 2003 - ISBN 0-470-84438-8
    • Roger L. Freeman Radio System Design for Telecommunications Third Edition - John Wiley & Sons, Inc., 2007 - ISBN 978-0-471-75713-9
    • Ingvar Henne, Per Thorvaldse n Planning of line-of-sight radio relay systems Second edition - Nera, 1999
    • Каменский Н. Н., Модель А. М., под редакцией Бородича С. В. Справочник по радиорелейной связи - Радио и связь, 1981
    • Слюсар В.И. Современные тренды радиорелейной связи. //Технологии и средства связи. – 2014. - № 4.. - С. 32 - 36. .
    • В. Т. Свиридов. Радиорелейные линии связи. //Государственное издательство физико-математической литературы. – 1959. - С. 81 .

Отечественной радиорелейной промышленности более 50 лет. За время своего развития отрасль вышла на ожидаемые позиции. Сегодня радиорелейные каналы (РРЛ) отлично зарекомендовали себя в обеспечении удаленных районов с низкой инфраструктурой, охвате больших пространств и местностей со сложной структурой геологии. К числу заметных отличий от проводной технологии добавился более низкий бюджет оснащения.

Радиорелейная связь относится к беспроводным каналам связи, но их не нужно путать с известным WI —FI . Отличия следующие:

  • В РРЛ создаются резервные каналы и применяется агрегирование. Теоретически, понятие дальности связи к радиорелейным станциям не применяется, так как расстояние ретрансляции зависит от количества вышек;
  • Высокая пропускная способность;
  • Работа в полном канальном дуплексе;
  • Использование собственных (локальных) диапазонов и высокоэффективных модуляций.

Применение радиорелейных линий связи

Радиорелейные линии связи находят широкое применение в различных отраслях промышленности. В общем случае беспроводные каналы заменяют проводные сети многоканальной телефонной связи. Лидером по протяженности радиорелейных линий связи остается Киргизия. Использование РРЛ обусловлено преобладанием горного рельефа на всей территории Республики. Вторым направлением оснащения современными линиями передачи остается телевидение. Учитывая, что средний радиус распространения вещания составляет 100 километров, федеральные каналы все чаще осваивают строительство так называемых беспрограммных телецентров.

Беспроводная связь РРЛ активно используется провайдерами интернета, сотовыми операторами. Известно применение радиорелейных каналов для организации корпоративной связи. Ввиду большего чем у WI —FI бюджета и необходимости получения лицензии, РЛЛ остается недоступным для малого и среднего бизнеса, частных лиц. Срок службы оборудования достигает 30 лет с учетом того, что комплексы могут работать даже в суровых условиях климата.

Традиционные РРЛ магистрального типа постепенно переходит в сегмент городских линий, уступая место оптоволоконным линиям. Однако такие шаги требуют согласования бюджета проекта. Безусловным остается применение РРЛ в северных, малозаселенных районах, где нет необходимости в прогнозировании трафика.

В практике развертывания РРЛ сегодня используются два типа технологии. Первый – PDH – плезиохронная цифровая иерархия. При такой организации передачи сигнала обеспечивается скорость в режимах 32 каналов или мультиплексирования на скорости от 2 до 139 Мбит в секунду. Считается устаревшей технологией радиорелейной связи. На смену предыдущему поколению пришел стандарт SDH . Иерархия цифровой синхронизации обеспечивает более устойчивые каналы связи посредством транспортных модулей STM . Скорость потоков в этом диапазоне варьируется от 155 Мбит в секунду до 160 Гбит. По утверждениям разработчиков стандарта, скорость передачи данных совместимой с PDH технологии может быть и выше.

В практике применения РРЛ-сетей используется несколько вариантов развертывания. Самый популярный сценарий размещения станций – пошаговое размещение вышек на маршруте оснащения. Применение технологии hop-by-hop обеспечивает возможность оперативного внесения изменений в действующие конфигурации или модернизацию устаревшего оборудования.

Принцип построения, используемое оборудование, применение

Основными компонентами, обеспечивающими передачу сигналов на большие расстояния, являются радиорелейные линии прямой видимости. В их задачи входит обеспечение устойчивой связи при передаче до потребителя сообщений в цифровом формате, вещания телевидения и звуковых эфиров. В состав волнового спектра входят диапазоны сантиметровых и дециметровых волн.

В используемых диапазонах прямой видимости не наблюдаются помехи атмосферного и техногенного происхождений. Расстояние между ближайшими станциями, работающих в ширине спектра 30 ГГц является расчетным, зависит от высоты вышек и рельефа в местности размещения.

Для передачи информации на одной частоте или дуплексе используется комплекс аппаратуры. Это радиоствол (канал с широкой пропускной способностью), телефонный ствол и ТВ ствол, предназначенные для передачи сигналов соответствующего типа. Топология построения комплекса оборудования представлена трехуровневой системой:

Радиорелейная связь нашла широкое применение в областях народного хозяйства. Принцип ретрансляции активно используется для организации и построения локальных сетей крупных корпораций. Надежность и достоверность передаваемых сигналов применяется для управления войсками и организации коммерческой связи.

Преимущества технологии РРЛ успешно внедряются в инфраструктуру производств, имеющих большое количество удаленных объектов. Это аэропорты, железнодорожные и морские министерства сообщений. Единственным недостатком, который остается ощутимым при возведении систем передачи данных остается необходимость обеспечения прямой видимости между ретрансляторами. Это требование ставит целый ряд условий перед службами технического оснащения, повышает бюджет проекта за счет необходимости увеличения числа промежуточных станций.



Просмотров